Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Electrical Insulations and Discharges

    A tantárgy neve magyarul / Name of the subject in Hungarian: Villamos szigetelések és kisülések

    Last updated: 2024. január 17.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Course ID Semester Assessment Credit Tantárgyfélév
    VIVEMA19   3/1/0/v 5  
    3. Course coordinator and department Dr. Tamus Zoltán Ádám,
    4. Instructors
    István Berta, DSc
    Zoltán Ádám Tamus, PhD
    5. Required knowledge -
    6. Pre-requisites
    Kötelező:
    NEM
    (TárgyEredmény( "BMEVIVEMA14", "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIVEMA14", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:
    -
    7. Objectives, learning outcomes and obtained knowledge Electrical insulation technology is one of the classical branches of electrical engineering. However, in the 21st century, the progress of the field is accelerating, as most applications require insulation and insulating materials that are increasingly resistant to special stresses. In response to these challenges, special polymers, their composites, and nanocomposite polymers have emerged, as it has been found that adding nanoparticles can further enhance the beneficial properties of polymers. In this course, the electrical phenomena are introduced to the electrical in electrical insulating materials and insulations. The phenomenon of dielectric polarisation in different materials and the basics of the elementary processes will be reviewed. The electrical discharges and breakdown processes in different states of matter are presented. For both discharge and dielectric processes, the practical implications are presented in areas of electrical engineering where insulations are subjected to extreme electrical and environmental stresses.
    8. Synopsis
    Lectures:

    Basics of electrical insulation technology, basic types of insulation and breakdown. Insulation problems in electrical engineering. 

    Insulating materials in the electric field, layered insulations, dielectric refraction and its role in insulations, stress control solutions. Composite insulation materials

    Dielectric polarisation: the relationship between field quantities and charges. Macro and micro characteristics of polarisation. Polarizability. 

    Elementary polarisation processes I: Electron polarisation and its models. The Clausius-Mossotti relation. Ion polarisation  

    Elementary polarisation processes II: Orientation polarisation and ion hopping polarisation 

    Dielectric response function and its characteristics in the time and frequency domain.  

    Measurement of the dielectric response in time and frequency domains using current and voltage measurements. Relationship between dielectric response and insulation condition 

    Electric discharges in gases (collisions, photo- and thermal ionisation, laws of electric arc). Physical processes producing and consuming charge carriers.  

    Partial discharges: corona discharges (electron avalanche, plasma discharge, channel discharge), cavity discharges, creep discharges, and lightning discharges. Breakdown: flashover and spillover, spark discharge, electric arc.  

    Electrostatic discharges (suppressed spark discharges, propagating discharges, discharges on the surface of a layer of deposited dust). Detrimental effects of discharges (fires, explosions, ESD). Industrial applications of discharges. 

    Development of flashover processes in insulating liquids. Breakdown of pure and commercial liquids. 

    Electrical strength breakdown in solid insulating materials. Electrical breakdown cases: intrinsic breakdown, electromechanical breakdown, thermal breakdown, electrical ageing 

    Statistical theory of breakdown, effect of stress and duration on dielectric strength 

    Practices:

    Calculation of electric fields, electric fields of layered structures, dimensioning of insulations 

    Calculation of dielectric constants of rare gases in different models (electronic polarisation), application of the Clausius-Mossotti relation 

    The dielectric constant of ionic crystalline materials, optical range and low frequency. Determination of the time constant of ion polarisation 

    Determination of the electrical model of insulations, interpretation of the dielectric response function based on measurement results 

    Analytical modelling of gas breakdown, calculation of Paschen curve for noble gases 

    Calculation of discharge energy and interpretation of measurement results.  

    Investigation of electrostatic charging and the different factors of charging on typical arrangements 

    9. Method of instruction 2 lectures weekly and 2 practices biweekly
    10. Assessment
    Passing on a midterm test in the semester.
    Exam: written with optional oral improvement
    11. Recaps One retaking in the semester and the second one in the exam period.
    12. Consultations At previously agreed date and time
    13. References, textbooks and resources
    Safa Kasap: Principles of Electronic Materials and Devices, 4th Edition, McGraw Hill, 2018 
    Gorur Govinda Raju: Dielectrics in Electric Fields, 2nd Edition, CRC Press, 2016 
    Kwan Chi Kao: Dielectric Phenomena in Solids, Elsevier, 2004 
    14. Required learning hours and assignment
    Kontakt óra56
    Félévközi készülés órákra14
    Felkészülés zárthelyire20
    Házi feladat elkészítése-
    Kijelölt írásos tananyag elsajátítása20
    Vizsgafelkészülés40
    Összesen150
    15. Syllabus prepared by
    István Berta, DSc
    Zoltán Ádám Tamus, PhD