Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Photonics Devices

    A tantárgy neve magyarul / Name of the subject in Hungarian: Fotonikai eszközök

    Last updated: 2024. február 15.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    MsC
    Course ID Semester Assessment Credit Tantárgyfélév
    VIETMA13   3/1/0/v 5  
    3. Course coordinator and department Dr. Hurtony Tamás József,
    Web page of the course https://www.ett.bme.hu/education/vietma06
    4. Instructors Dr.  Tamás Hurtony
    5. Required knowledge Physics, Electronics Technology and Materials Science
    6. Pre-requisites
    Kötelező:
    NEM
    (TárgyEredmény( "BMEVIETMA06", "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIETMA06", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    7. Objectives, learning outcomes and obtained knowledge The objective of the course is to introduce and familiarize with the operating principle of devices based on the interaction of light and matter used in practice and the characteristic features of each device.
    8. Synopsis
    The topics of the presentations:
     
    1. Introduction: Understanding the fundamental physical properties of light, overview of the basics of electromagnetic wave propagation.
    2. Passive optical components: Introduction to optical elements that do not require active energy supply. Overview of mirrors, lenses, prisms, optical fiber cables, and diffraction gratings.
    3. Physical properties of optical materials: Description of the structural properties of optical glasses. Presentation of glass manufacturing technology. Introduction of various catalog glass properties and their application areas.
    4. Production of optical crystals: Description of the structural properties of optical crystals. Presentation of single crystal growth processes. Introduction of the special properties of optical crystals and their application areas.
    5. Incoherent light sources: Description of thermal and luminescent emitters, light-emitting diodes, and methods of light generation. Explanation of the properties of radiation generated in this way. Explanation of the operation principle of photodetectors usable for light detection.
    6. Coherent light sources: Introduction. Discussion of the basic conditions for laser operation. Classification of lasers according to laser active medium. Comparison of properties of different types of lasers.
    7. Solid-state lasers and their applications: Description of direct bandgap semiconductor materials. Presentation of the structural designs of laser diodes. Introduction of the physical parameters and applications of semiconductor lasers.
    8. Multilayer optical coatings: Overview of thin film technology, discussion of vacuum deposition and sputtering. Presentation of thin film structures with special properties: dielectric mirrors, modulators, deflectors.
    9. Optical elements: Description of the polarization properties of light. Presentation of the structure of birefringent materials. Overview of the operation of polarizers and filters based on different principles. Presentation of nonlinear optical devices as frequency-shifting elements.
    10. Optical data transmission: Presentation of optical waveguide structures. Description of single-mode and multimode optical fiber cables and surface waveguides. Overview of the manufacturing technology of optical fiber cables. Presentation of the physical properties of optical fiber cables.
    11. Optical switches: Interaction of magnetic field with light and acoustic waves. Description and overview of magneto-optical and acousto-optical devices and their operation principles.
    12. Liquid crystals: Overview of the structural composition and optical characteristics of liquid crystal materials, types of liquid crystal displays, and their comparison based on optical and other properties.
    13. CMOS and CCD devices in light detection: Overview of the operating principles of CMOS and CCD image sensors. Presentation of the structural composition of sensor elements. Comparison of the two sensor types based on various properties.
     
    The topics of the excersives:
     
    1. Geometrical optics tasks: Observation of the operation of passive optical elements and imaging laws in geometrical optics.
    2. Comparison of photometric and radiometric basic concepts and illustration through practical examples.
    3. Application of linear response theory in optics. Explanation of optical transfer function through simple application examples.
    4. Matrix optics: Visualization of imaging laws of passive optical elements with ray tracing, calculation of transmission matrices for specific components.
    5. Optical microscopy: Overview of the parameters and operational limitations of optical microscopes. Description of special contrast enhancement techniques and demonstration through practical examples.
    6. Lasers in practice: Overview of industrial applications of lasers. Study of the operational principles of individual industrial laser devices and understanding their capabilities.
    7. Displays: Comparison of displays available in the market based on optical and other properties. TFT monitors, TN, IPS, PVA, S-PVA, MVA panels. Plasma displays. 3D displays.
     

    9. Method of instruction Lecture, practice
    10. Assessment

    Attendance at a minimum of 70% of practical classes.

    Completion of a mid-term test

    Written exam during the exam period, with the possibility of oral correction 

    11. Recaps Midterm test can be retaken during the re-take period.
    12. Consultations Continuously upon request.
    13. References, textbooks and resources

    Kasap, Safa. Optoelectronics & photonics: principles & practices: international edition. Pearson, 2013.

    Saleh, Bahaa EA, and Malvin Carl Teich. Fundamentals of photonics. john Wiley & sons, Harvard, 2019.  

    14. Required learning hours and assignment
    Kontakt óra48
    Félévközi készülés órákra28
    Felkészülés zárthelyire28
    Házi feladat elkészítése0
    Kijelölt írásos tananyag elsajátítása0
    Vizsgafelkészülés46
    Összesen150
    15. Syllabus prepared by Dr. Tamás Hurtony