Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Nanoelectronics and Nanotechnology

    A tantárgy neve magyarul / Name of the subject in Hungarian: Nanoelektronika, nanotechnológia

    Last updated: 2024. március 6.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Electrical engineering MSc
    Microelectronics and electron technology
    Course ID Semester Assessment Credit Tantárgyfélév
    VIEEMB03   2/1/0/v 5  
    3. Course coordinator and department Dr. Neumann Péter Lajos,
    4. Instructors
    Dr. Attila Bonyár, Associate Professor, ETT
    Dr. János Mizsei, Professor Emeritus, EET
    Dr. Péter Neumann, Senior Lecturer, EET
    5. Required knowledge Physics, electronics, microelectronics
    6. Pre-requisites
    Kötelező:
    NEM
    (TárgyEredmény( "BMEVIEEMA00", "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIEEMA00", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:
    NEM
    (TárgyEredmény( "
    BMEVIEEMA00
    ", "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("
    BMEVIEEMA00
    ", "FELVETEL", AktualisFelev()) > 0)
    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.
    7. Objectives, learning outcomes and obtained knowledge
    The course objective is to introduce the new approach and description methodology, which are necessary for a deeper understanding of the operation, design and process of micro-machining technologies. Discussion on the physical phenomena is essential concerning the electronic devices and components in the nanometer spatial and femtosecond time domain, especially for new devices and their operating principles based on nanotechnology.
    In the field of electronic technology, the targets are the material science-oriented basics used in nanotechnology, physical and chemical properties due to the nanoscale structuring, and applicable test methods that are specific to the nanometer range.
    8. Synopsis

     

    LECTURES

    1. The manufacturing of electronic systems, physical, chemical and nanotechnology approaches for reviewing and classification of the manufacturing processes.

    2. Semiconductor top-down technologies (1): preparation of single crystals. Epitaxial growth, oxide growth, lithography.

    3. Semiconductor top-down technologies (2): etching, CVD, diffusion, ion implantation, conductive and insulator layer deposition.

    4. Component and module circuit technology. Compound-semiconductor structures technology and applications: III-V and II-VI compound semiconductors, types of direct and indirect band structure, optical properties and their use, production and use of the compound semiconductor multilayers.

    5. Quantum valley structures and their practical applications (e.g. LEDs). Application of nanotechnology in the thermal management of classical semiconductor devices.

    6. Isotropic and anisotropic etching. Production of three-dimensional structures (cavities, microchannels, membranes, tubes, needles, bridges, console, suspended weight). Technology versions for the bulk and surface micromachining.

    7. Application of thin-film technologies for producing passive networks, optical layer structures and displays (screens, etc).

    8. Basics of nanotechnology. Nanotubes, nano-wires, special multilayer structures. Creating semiconductor nano-objects. Solid state and nano-mechanical properties of thin films. The allotrope modifications of carbon and their nanotechnology applications. The creation and use of metallic nanostructures.

    9. The scale-down results in physical phenomena of electronic devices and circuits, secondary effects (quantum mechanical, thermal ...), and their influence on the characteristics of the electron devices and circuits.

    10. Nanoelectronics devices and components (size-reduced MOS transistors, vacuum microelectronics, single-electron circuits, memory cells, spintronics, quantum electronics, carbon nanotube transistors, graphene oxide electronics, thermal-electronic integrated circuits).

    11. Special technological processes for the nanometer size systems, the top-down and bottom-up principle, nanolithography, self-adjusting, and self-mounting.

    12. Test methods in the nanometer range, surface scanning test devices (AFM, STM, KFM, NSOM).

    13. Importance of the simulation, overview of simulation methods in the nanoelectronics.

    14. New results of the nanotechnology and the trends by ITRS.


     

    PRACTICES

    1. Semiconductor laboratory visit, an overview of all technological equipment.

    2. Semiconductors surface conditions. Relationship between the surface potential barrier and the surface charge density. The surface conditions for various doping and different surface state densities.

    3. Scale down in microelectronics. Nanoelectronics and micromechanics: numerical consequences.

    4. Presentation of scanning probe methods of measurement techniques, practical basics of tunnelling and atomic force microscopy. Evaluation and processing of AFM images (e.g. levelling, artefact filtering, etc.).

    5. Presentation of advanced scanning probe methods (EFM, MFM, KFM, SNOM, SCM, lithography etc).

    6. Nanostructures production methods: top-down and bottom-up (vapour, liquid phase, solid phase methods, lithography), practical application of nanostructures.

    7. Allotropic modifications of the carbon, nanotechnology applications: graphite, diamond, fullerenes, carbon nanotubes, graphene.


     

    9. Method of instruction lectures, laboratory and classroom exercises
    10. Assessment
    One examination paper during the semester at a satisfactory or better level written exam in the examination season.
    11. Recaps
    The examination paper is reparable once during the semester. The replacement period, subject to payment of a separate fee, repeated replacement procedure. We provide another chance to repair the examination paper after the end of the semester.
    .
    12. Consultations Preliminary agreement is necessary concerning the date and location.
    13. References, textbooks and resources

    Lecture presentation materials and notes.

    Mojzes Imre, Molnár László Milán: Nanotechnológia, Műegyetem Kiadó (2007)

    Konczos Géza: Bevezetés a nanoszerkezetű anyagok világába, Elte Eötvös Kiadó (2009)

    Bharat Bhushan: Springer Handbook of Nanotechnology, Springer (2004)

    Bharat Bhushan: Handbook of Micro/Nano Tribology, CRC (1999)

    Rainer Waser: Nonoelectronics and Information Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2005)

    Nanoelectronics: Materials, Devices, Applications, M. V. de Voorde, R. Puers, Wiley‐VCH (2017)

    Nanoelectronics Fundamentals-Materials, Devices and Systems, H. Raza, NanoScience and Technology, Springer (2019)

    Nanoelectronics: Devices, Circuits, and Systems, Nikos Konofaos, CRC Press, 1 edition (2015)

    ITRS: http://www.itrs2.net/

    Solid State Technology: http://electroiq.com/

    Solid State Electronics: https://www.journals.elsevier.com/solid-state-electronics
    14. Required learning hours and assignment
    Kontakt óra42
    Félévközi készülés órákra15
    Felkészülés zárthelyire20
    Házi feladat elkészítése30
    Kijelölt írásos tananyag elsajátítása20
    Vizsgafelkészülés23
    Összesen150
    15. Syllabus prepared by
    Dr. Attila Bonyár, Associate Professor, ETT
    Dr. János Mizsei, Professor Emeritus, EET
    Dr. Péter Neumann, Senior Lecturer, EET