Power Engineering Laboratory

A tantárgy neve magyarul / Name of the subject in Hungarian: Villamos energetika laboratórium

Last updated: 2015. november 2.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Course ID Semester Assessment Credit Tantárgyfélév
VIVEA337 6 0/0/3/f 4  
3. Course coordinator and department Dr. Számel László,
Web page of the course https://vet.bme.hu/?q=tantargyak
5. Required knowledge According to actual directives, included in Specialization and Department Regulation. Credits of course of Electrical Machines and Applications are advised to be obtained.
6. Pre-requisites
Kötelező:
(Szakirany("AVIvillen", _)
VAGY Training.code=("5NAA7") )


ÉS NEM ( TárgyEredmény( "BMEVIVEAC07" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIVEAC07", "FELVETEL", AktualisFelev()) > 0
VAGY
TárgyEredmény( "BMEVIVEAC08" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIVEAC08", "FELVETEL", AktualisFelev()) > 0)

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

8. Synopsis
I. Design practice and software tools in Power System Transmission and
Distribution

1.    Load profile and voltage distribution analysis in a low voltage
grid. Fault current calculation and selection criteria for fuse rating.

2.    Analysing the load and control characteristic of a high/medium
voltage (120/20 kV) transformer substation. Controlling the power factor and
voltage quality by means of shunt capacitors.
 
3.  Deriving zero sequence models of Y/y , D/y, D/z and Y/d transformers
for non-symmetrical fault and serial failure analysis. 

4.   Fault current distribution on a 120 kV HV transmission line, analyzing
the influence of grounding conditions and calculation of potential rise of
faulted tower and earthing grid of nearby substations.
II. High voltage measurements

5. Ideal switch off in case of DC and AC faults. Application of concentrated parameter model to calculate transient recovery voltage (TRV) between the connectors of a switchgear. Effects of the network parameters on the TRV.

6. Examination of steady state arc and extinguishing DC arc. Measurement of voltage vs. current and voltage vs. arc length characteristics. Comparing meaurement results to the ones calculated from arc models. Examination of how network parameters and arc extinction devices influence the switch off process.

7. Examination of AC arcs, its properties and extinction. Examination of arc hysteresis and time functions of arcs in AC circuits at different phase shift. Examination of influence of switch on angle, phase shift and arc extinction devices on the switch off process.

8. Examination of fuses and miniature circuit breakers (MCB). Measurement of the switch off time vs. current characteristics of fuse models and an MCB.

III. Electrical machines

9. Power engineering measuring technique

10. 3 phase transformer

11. Induction machine

12. DC machine

13. Synchronous machines

 

9. Method of instruction

Laboratory measurement are 3 hours long 12 times in the semester, with one opportunity for supplement measurement.

11. Recaps

Maximum two opportunities are provided in one semester for supplement failed measurements (typically the last week before the end of semester).

12. Consultations

Consultation time is available on-demand after preliminary agreement.

13. References, textbooks and resources Laboratory measurement programs are based on measurement guides in electronic form, supplied on the department’s homepage.
14. Required learning hours and assignment
Contact hours 42
Preparation work for lab measurements 38
Preparation for the midterm 15
Measurement documentation work 25
  
Total120