A BSc képzés programja

a mérnök informatikus és
a villamosmérnöki
szakokon

(V 1.6)

BUDAPEST, 2013
TARTALOMJEGYZÉK

I. BEVEZETÉS ... 6
 I.1 A mérnök informatikus alapszak tantervi hálója .. 8
 I.2 A villamosmérnöki alapszak tantervi hálója ... 9
 I.3 A tanszékek teljes és rövidített neve ... 10

II. MÉRNÖK INFORMATIKUS ALAPSZAK .. 11
 II.1 Természettudományos alapismeretek .. 13
 II.2 Gazdasági és humán ismeretek ... 18
 II.3 Szakmai törzsanyag .. 21
 II.4 Differenciált szakmai ismeretek - Elágazó tantárgyak .. 40
 II.5 A mérnök informatikus alapszak szakirányai és tantárgyai ... 44
 II.6 A mérnök informatikus alapszak szakiránytárgyainak leírása ... 45

II.6.1 Autonóm intelligens rendszerek szakirány (IIT, MIT) ... 45
 II.6.1.1 A szakirány tantárgyai .. 46
 II.6.1.1.1 Ipari képfeldolgozás és képmegjelenítés BMEVIIIA356 .. 46
 II.6.1.1.2 Kooperatív és tanuló rendszerek BMEVIMIA357 .. 47
 II.6.1.2 Autonóm rendszerek ágazat (IIT) .. 48
 II.6.1.2.1 Autonóm robotok és járművek BMEVIIIA358 ... 48
 II.6.1.2.2 Autonóm robotok és járművek laboratórium 1. BMEVIIIA361 ... 49
 II.6.1.2.3 Autonóm robotok és járművek laboratórium 2. BMEVIIIA424 ... 49
 II.6.1.2.4 Önálló laboratórium BMEVIIIA363 ... 49
 II.6.1.2.5 Szakdolgozat BMEVIIIA367 ... 49
 II.6.1.3 Intelligens rendszerek ágazat (MIT) ... 50
 II.6.1.3.1 Beágyazott információs rendszerek BMEVIMIA359 .. 50
 II.6.1.3.2 Intelligens rendszerek 1 laboratórium BMEVIMIA360 ... 50
 II.6.1.3.3 Intelligens rendszerek 2 laboratórium BMEVIMIA430 ... 51
 II.6.1.3.4 Önálló laboratórium BMEVIMIA362 ... 51
 II.6.1.3.5 Szakdolgozat BMEVIMIA410 .. 51

II.6.2 Infokommunikációs hálózatok szakirány (HIT, TMIT) .. 52
 II.6.2.1 A szakirány tantárgyai .. 52
 II.6.2.1.1 Protokoll-technológia BMEVITMA364 .. 52
 II.6.2.1.2 Mobil infokommunikációs rendszerek BMEVIIHIA137 ... 53
 II.6.2.2 Infokommunikációs hálózatok és szolgáltatások ágazat (TMIT) .. 53
 II.6.2.2.1 IP alapú hálózatok menedzsmentje BMEVITMA365 .. 53
 II.6.2.2.2 Infokommunikációs hálózatok és szolgáltatások laboratórium 1 BMEVITMA366 54
 II.6.2.2.3 Infokommunikációs hálózatok és szolgáltatások laboratórium 2 BMEVITMA427 54
 II.6.2.2.4 Önálló laboratórium BMEVITMA367 ... 54
 II.6.2.2.5 Szakdolgozat BMEVITMA415 .. 54
II.6.2.3 Mobil infokommunikáció ágazat (HIT) .. 54
 II.6.2.3.1 Infokommunikációs hálózatok tervezése és üzemeltetése BMEVIAUA369 54
 II.6.2.3.2 Mobil infokommunikációs laboratórium 1 BMEVIAUA319 55
 II.6.2.3.3 Mobil infokommunikációs laboratórium 2 BMEVIAUA425 55
 II.6.2.3.4 Onnáló laboratórium BMEVIAUA320 55
 II.6.2.3.5 Szakdolgozat BMEVIAUA422. 55

II.6.3 Informatikai technológiák szakirány (AAIT, IIT, MIT) 56
 II.6.3.1 A szakirány tantárgyai ... 57
 II.6.3.1.1 Adatveszéreelt alkalmazások fejlesztése BMEVIAUA369 57
 II.6.3.1.2 Objektumorientált szoftvertervezés BMEVIIIA371 57
 II.6.3.1.3 Intelligens rendszerfelügyelet BMEVIAUA370 58

II.6.3.2 Szoftverfejlesztési ágazat (AAIT) .. 59
 II.6.3.2.1 Informatikai technológiák laboratórium 1 BMEVIAUA372 59
 II.6.3.2.2 Informatikai technológiák laboratórium 2 BMEVIAUA425 59
 II.6.3.2.3 Onnáló laboratórium BMEVIAUA375 59
 II.6.3.2.4 Szakdolgozat BMEVIAUA406 59

II.6.3.3 Rendszertervezési ágazat (IIT) ... 59
 II.6.3.3.1 Informatikai technológiák laboratórium 1 BMEVIIIA374 59
 II.6.3.3.2 Informatikai technológiák laboratórium 2 BMEVIIIA428 59
 II.6.3.3.3 Onnáló laboratórium BMEVIIIA377 60
 II.6.3.3.4 Szakdolgozat BMEVIIIA412 60

II.6.3.4 Rendszertervezési ágazat (MIT) ... 60
 II.6.3.4.1 Informatikai technológiák laboratórium 1 BMEVIMIA373 60
 II.6.3.4.2 Informatikai technológiák laboratórium 2 BMEVIMIA429 60
 II.6.3.4.3 Onnáló laboratórium BMEVIMIA376 60
 II.6.3.4.4 Szakdolgozat BMEVIMIA411 60

II.6.4 Médiainformatika és -biztonság szakirány (TMIT, HIT) 61
 II.6.4.1 A szakirány tantárgyai ... 62
 II.6.4.1.1 Tartalomkezelési technológiák BMEVITMA368 62
 II.6.4.1.2 Médiatechnológiák BMEVIAUA321 62

II.6.4.2 Médiainformatika ágazat (TMIT) .. 63
 II.6.4.2.1 Médiabiztonság BMEVITMA378 63
 II.6.4.2.2 Médiainformatika laboratórium 1 BMEVITMA379 63
 II.6.4.2.3 Médiainformatika laboratórium 2 BMEVITMA432 63
 II.6.4.2.4 Onnáló laboratórium BMEVITMA380 63
 II.6.4.2.5 Szakdolgozat BMEVITMA416 64

II.6.4.3 Médiatechnológiák ágazat (HIT) ... 64
 II.6.4.3.1 Adatbiztonság és tartalom alapú információkezelés BMEVIAUA322 64
 II.6.4.3.2 Médiatechnológiák laboratórium 1 BMEVIAUA323 64
 II.6.4.3.3 Médiatechnológiák laboratórium 2 BMEVIAUA431 64
 II.6.4.3.4 Onnáló laboratórium BMEVIAUA324 64
 II.6.4.3.5 Szakdolgozat BMEVIAUA413 64

II.6.5 Vállalati információrendszer szakirány (ETT, TMIT, SZIT) 65
 II.6.5.1 A szakirány tantárgyai ... 66
 II.6.5.1.1 Vállalatiirányítási rendszerek BMEVIETA382 66
 II.6.5.1.2 Termelésinformatika BMEVIETA383 66
 II.6.5.1.3 Gazdálkodási információmenedzsment BMEVITMA381 66
II.7 Szabadon választható tantárgyak .. 69

III. VILLAMOSMÉRNÖKI ALAPSZAK .. 70

III.1 Természettudományos alapismeretek .. 73
III.2 Gazdasági és humán ismeretek .. 81
III.3 Szakmai törzsanyag .. 84
III.4 Differenciált szakmai ismeretek - Laboratórium 1-2 .. 109
III.5 A villamosmérnöki alapszak szakirányainak felsorolása 114

III.5.1 Beágyazott és irányító rendszerek szakirány (MIT, IIT, AAIT) 115

III.5.1.2 Beágyazott és ambiens rendszerek laboratórium BMEVIMIA350 118
III.5.1.2.1 Beágyazott és ambiens rendszerek laboratórium BMEVIAUA351 120
III.5.1.2.2 Szakdolgozat BMEVIMIA352 ... 121

III.5.1.3 Számítógép-alapú rendszerek ágazat (AAIT) .. 119

III.5.1.3.1 Programozható irányítóberendezések és szenzorrendszerek BMEVIIIA355 119
III.5.1.3.2 Szakdolgozat BMEVIIIA356 ... 119

III.5.1.4 Infokommunikációs rendszerek szakirány (HIT, TMIT, HVT) 122

III.5.1.4.1 Mikrokontroller laboratórium BMEVIAUA355 .. 120
III.5.1.4.2 Szakdolgozat BMEVIAUA356 ... 121

III.5.2 Infokommunikációs rendszerek szakirány (MIT, TMIT, HVT) 122

III.5.2.1 Médiaalgópapírtechnológiák és rendszerek ágazat (HIT) 124

III.5.2.1.1 Hálózati technológiák és alkalmazások BMEVITMA343 124
III.5.2.1.2 Szakdolgozat BMEVITMA344 ... 125

III.5.2.3 Infokommunikációs hálózatok és alkalmazások ágazat (TMIT) 124

III.5.2.3.1 Infokommunikációs hálózatok és alkalmazások laboratórium BMEVITMA343 124
III.5.2.3.2 Szakdolgozat BMEVITMA345 ... 124
III.5.2.3.3 Szakdolgozat BMEVITMA414 .. 125

III.5.2.4 Nagyfrekvenciás rendszerek és alkalmazások ágazat (HVT) ... 125
 III.5.2.4.1 Nagyfrekvenciás rendszerek és alkalmazások laboratórium BMEVIHVA344 125
 III.5.2.4.2 Önálló laboratórium BMEVIHVA346 .. 125
 III.5.2.4.3 Szakdolgozat BMEVIHVA409 ... 125

III.5.3 Mikroelektronika és elektronikai technológia szakirány (EET, ETT) 126

III.5.3.1 A szakirány tantárgyai ... 127
 III.5.3.1.1 Mikroelektronikai tervezés BMEVIEEA328 ... 127
 III.5.3.1.2 Elektronikai gyártás és minőségbiztosítás BMEVIETA331 .. 127

III.5.3.2 Mikroelektronika ágazat (EET) .. 128
 III.5.3.2.1 Monolit technika BMEVIEEA329 .. 128
 III.5.3.2.2 Mikroelektronikai laboratórium BMEVIEEA330 ... 128
 III.5.3.2.3 Önálló laboratórium BMEVIEEA339 .. 128
 III.5.3.2.4 Szakdolgozat BMEVIEEA418 ... 129

III.5.3.3 Elektronikai technológia ágazat (ETT) ... 129
 III.5.3.3.1 Moduláramkörök és készülékek BMEVIETA332 ... 129
 III.5.3.3.2 Technológiai folyamatok és minőségenőrzésük laboratórium BMEVIETA333 129
 III.5.3.3.3 Önálló laboratórium BMEVIETA340 .. 130
 III.5.3.3.4 Szakdolgozat BMEVIETA419 ... 130

III.5.4 Villamos energetika szakirány (VET) .. 131

III.5.4.1 A szakirány tantárgyai ... 132
 III.5.4.1.1 Villamosenergia-átvitel BMEVIVEA335 ... 132
 III.5.4.1.2 Villamos gépek és alkalmazások BMEVIVEA334 ... 133
 III.5.4.1.3 Villamos kapcsolókészülékek BMEVIVEA336 ... 133
 III.5.4.1.4 Villamos energetika laboratórium BMEVIVEA337 ... 134
 III.5.4.1.5 Önálló laboratórium BMEVIVEA338 .. 134
 III.5.4.1.6 Szakdolgozat BMEVIVEA421 ... 134

III.6 Szabadon választható tantárgyak .. 135
I. BEVEZETÉS

A BME Villamosmérnöki és Informatikai Kara hazánk legnagyobb villamosmérnöki és informatikai képzőhelye mind alapképzési (BSc), mind mesterképzési (MSc) szinten, egészségügyi mérnöki szakterületen (MSc) pedig egyedüliként nyújt képzést.

A Villamosmérnöki és Informatikai Kar (VIK) a Műegyetem egyik legnagyobb kara, a hazai villamosmérnök és informatika oktatás és kutatás egyik leg jelentősebb bázisa, elismerőt kutató és fejlesztő hely, ahova a világ vezető infokommunikációs vállalatai telepítették laboratóriúmaikat.

A BME VIK-re bejutott hallgatók átlagpontszáma messze kiemelkedik az országos átlagból, az itt szerzett diploma presztízse munkáltatói felmérések alapján a legmagasabb az országban.

A többciklusú képzési rendszerben jelenleg egyedüliként a Műegyetem Villamosmérnöki és Informatikai Karán folyik olyan szintű villamosmérnök képzés, mely a mesterszintet és a PhD képzést is magában foglalja.

A car mester-, majd doktori képzésben továbbtanuló hallgatók képesek lesznek olyan kutatási-fejlesztési feladatok megoldására, elvégzésére, amelyeknek eredményeit nap mint nap tapasztaljuk a minket körülvevő elektronizált világban.

A képzés a 2005/2006. tanévtől a villamosmérnöki és a mérnök informatikus szakon is kétciklusúvá vált, és az alapképzési („bachelor” vagy BSc) ciklus hossza hét, a mesterképzési („master” vagy MSc) ciklus hossza négy szemeszter (félév). Az alapképzés szakdolgozat, a mesterképzés diplomaterv készítésével zárul. Az alapképzés két utolsó félévében ún. szakirányok keretében differenciált szakmai ismeretekhez jutnak a hallgatók. A mesterképzés pedig mindvégig szakirányokhoz kapcsolódik.

Az alapképzésben a mintantantervben előírt 210, a mesterképzésben további 120 kreditpont megszerzése esetén tehető záróvizsga.

A hallgatók az előírt szakmai alapozó és szaktantárgyak mellett további szakmai választható tantárgyakat, illetve közismereti, közgazdasági és társadalomtudományi tantárgyakkal szélesíthetik ismereteiket. Lehetőség van számos tantárgy angol nyelven történő hallgatására, valamint német és francia nyelvű képzés keretében a hallgatók az első négy szemeszterbeli tanulmányaikat idegen nyelven folytathatják, és tanulmányainak egy részét a választott nyelvterületen végezhetik.

Az oktatás előadások, laboratóriumi és tantermi gyakorlatok formájában folyik. A laborok felszereltsége – a cégek és az ipar támogatásának köszönhetően – lehetővé teszi a magas szintű szakmai gyakorlat megszerzését. A nagy cégek az egyetemet bizzák meg kutatási és fejlesztési feladatokkal úgy, hogy az ehhez szükséges eszközöket e cégek biztosítják. Azok a hallgatók, akik már az egyetemi évek alatt bekapcsolódnak ezekbe a feladatokba, a záróvizsgát követően többnyire azonnal állást kapnak a megbízó cégnél. Az sem ritka, hogy már a tanulmányok folytatása közben is tevékenykednek a hallgatók egy-egy cégnél, így szerezve gyakorlati tapasztalatokat az egyetemen tanultakhoz.
2008 szeptemberétől a Villamosmérnöki és Informatikai Kar mindkét alapképzési szakon bevezette a tankörrendszert. A gyakorlathoz hasonló foglalkozás célja olyan hallgatói közösség létrehozása, ahol a kreditrendszerű képzés következtében sok tekintetben elidegenedett és magukra maradt hallgatók szakmai és emberi kapcsolatokat tudnak kialakítani egymással, segíteni tudnak egymásnak a tanulmányaitban, értelmes szakmai programok irányába motiválják egymást.

Az alábbi dokumentum bemutatja a két alapképzési szak (mérnök informatikus és villamosmérnöki szak) tantervi hálóit, előtanulmányi rendjét, majd szakok szerinti bontásban a képzésben szereplő főbb tantárgycsoportok elemeit, a szakirányokat és az ágazatokat.

A kar képzéseiről, a tanszékeken folyó kutatás-fejlesztési és innovációs tevékenységről, a továbbképzési lehetőségekről, a hallgatói szakmai és közösségi életről részletes információk olvashatók a kari honlapon, a www.vik.bme.hu címen.

Dr. Vajta László
dékán

A dokumentumot összeállította: Kalmusné Mihók Zsuzsanna, Tevesz Gábor
I.1 A mérnök informatikus alapszak tantervi hálója

<table>
<thead>
<tr>
<th>Tárgynév</th>
<th>Szemeszter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Természettudományos alapismeretek (45 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>1 Analízis 1</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>2 Analízis 2</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>3 Valószínűségszámítás</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>4 Bevezetés a számításelméletbe 1</td>
<td>2/2/0/v/5</td>
</tr>
<tr>
<td>5 Bevezetés a számításelméletbe 2</td>
<td>2/2/0/v/4</td>
</tr>
<tr>
<td>6 Kódolástechnika</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>7 Algoritmuselmélet</td>
<td>2/2/0/v/5</td>
</tr>
<tr>
<td>8 Fizika 1</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>9 Fizika 2</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>Gazdasági és humán ismeretek (20 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>10 Mikro- és makróökonómia</td>
<td>4/0/0/v/4</td>
</tr>
<tr>
<td>11 Menedzsment és váll.gazd.</td>
<td>4/0/0/f/4</td>
</tr>
<tr>
<td>12 Útutó jog</td>
<td>2/0/0/f/2</td>
</tr>
<tr>
<td>13 Köt.vál gazd és hum. 1</td>
<td>2/0/0/f/2</td>
</tr>
<tr>
<td>14 Köt.vál gazd és hum. 2</td>
<td>2/0/0/f/2</td>
</tr>
<tr>
<td>Szakmai törzsanyag (93 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>15 Jelek és rendszerek</td>
<td>3/1/0/f/5</td>
</tr>
<tr>
<td>16 Elektronika</td>
<td>3/1/0/f/4</td>
</tr>
<tr>
<td>17 Szabályozástechnika</td>
<td>3/1/0/f/4</td>
</tr>
<tr>
<td>18 Digitális technika 1</td>
<td>3/1/0/f/5</td>
</tr>
<tr>
<td>19 Digitális technika 2</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>20 Számítógép architektúrák</td>
<td>2/2/0/v/5</td>
</tr>
<tr>
<td>21 Számítógép hálózatok</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>22 Távközlő hálózatok és szolgáltatások</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>23 Mérés laboratórium</td>
<td>0/0/2/f/2</td>
</tr>
<tr>
<td>24 Programozás alapja 1</td>
<td>2/2/0/v/5</td>
</tr>
<tr>
<td>25 Programozás alapja 2</td>
<td>2/2/0/v/4</td>
</tr>
<tr>
<td>26 Szoftverteltechnológia</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>27 Szoftver technikák</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>28 Információs rendszerek üzemeltetése</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>29 Operációs rendszerek</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>30 Adathűsítők</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>31 Mesterséges intelligencia</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>32 Számítógép grafika és képfeldolgozás</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>33 Szoftver laboratórium</td>
<td>0/0/2/f/2</td>
</tr>
<tr>
<td>Differenciált szakmai ismeretek (42 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>34 Elágazó</td>
<td>3/1/0/f/5</td>
</tr>
<tr>
<td>35 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>36 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>37 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>38 Szakirány laboratórium</td>
<td>0/0/2/f/2</td>
</tr>
<tr>
<td>39 Onálló laboratórium</td>
<td>0/0/4/f/6</td>
</tr>
<tr>
<td>40 Szakdolgozat</td>
<td>0/10/0/f/15</td>
</tr>
<tr>
<td>Szabadon választható tantárgyak (10 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>41 Szabadon választható tantárgy 1 és 2</td>
<td>2/2/0/f/2</td>
</tr>
<tr>
<td>42 Szabadon választható tantárgy 3</td>
<td>4/0/0/v/4</td>
</tr>
<tr>
<td>Kritériumtantárgy</td>
<td></td>
</tr>
<tr>
<td>43 Testnevelés</td>
<td>0/2/0/a/0</td>
</tr>
<tr>
<td>44 Szakmai gyakorlat</td>
<td>6 het/a/0</td>
</tr>
<tr>
<td>Ajanlott tantárgy</td>
<td></td>
</tr>
<tr>
<td>45 Tanköri foglalkozás</td>
<td>0/2/0/a/0</td>
</tr>
<tr>
<td>Összes heti óra (krit. tárgyak nélkül)</td>
<td>26</td>
</tr>
<tr>
<td>Összes kredit-pontszám</td>
<td>30</td>
</tr>
<tr>
<td>Vizsgaszám</td>
<td>8</td>
</tr>
</tbody>
</table>

1 Elágazó: Beszédimformációs rendszerek, Deklarativ programozás, Rendszermodellezés
2 A tanulmányait 2010. szeptemberében kezdő évfolyamtól kezdődően (felmenő rendszerben) csak 2 db Testnevelés tantárgy teljesítése kötelező, 2 db teljesítése pedig ajánlott.
3 A tanulmányait 2010. szeptemberében kezdő évfolyamtól kezdődően (felmenő rendszerben) a szakmai gyakorlat teljesítése kötelező. A szakra átvétellel kerülő hallgatók esetében a tanulmányok megkezdésének az átvétel időpontját tekintjük.
I.2 A villamosmérnöki alapszak tantervi hálója

<table>
<thead>
<tr>
<th>Tárgynév</th>
<th>Szemeszter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Természet tudományos alapismeretek (50 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>Természettudományos alapismeretek (50 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>1 Matematika A1</td>
<td>4/2/0/v6</td>
</tr>
<tr>
<td>2 Matematika A2</td>
<td>4/2/0/v6</td>
</tr>
<tr>
<td>3 Matematika A3</td>
<td>2/2/0/v4</td>
</tr>
<tr>
<td>4 Matematika A4</td>
<td>2/2/0/f4</td>
</tr>
<tr>
<td>5 Fizika 1</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>6 Fizika 2</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>7 A számítástudomány alapjai</td>
<td>4/2/0/v6</td>
</tr>
<tr>
<td>8 Anyagtudomány</td>
<td>3/0/1/v/4</td>
</tr>
<tr>
<td>9 Informatika 1</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>10 Informatika 2</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>Gazdasági és humán ismeretek (20 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>Gazdasági és humán ismeretek (20 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>11 Mikro- és makroökonómia</td>
<td>4/0/0/v4</td>
</tr>
<tr>
<td>12 Menedzsment és vállalkozásgazd.</td>
<td>4/0/0/f4</td>
</tr>
<tr>
<td>13 Üzleti jog</td>
<td>2/0/0/f2</td>
</tr>
<tr>
<td>14 Köt. vál. gazd. és hum. ism. 1</td>
<td>2/0/0/f2</td>
</tr>
<tr>
<td>15 Köt. vál. gazd. és hum. ism. 2</td>
<td>2/0/0/f2</td>
</tr>
<tr>
<td>Szakmai törzsanyag (86 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>Szakmai törzsanyag (86 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>16 A programozás alapjai 1</td>
<td>2/1/1/f5</td>
</tr>
<tr>
<td>17 A programozás alapjai 2</td>
<td>2/0/2/f4</td>
</tr>
<tr>
<td>18 Digitális technika 1</td>
<td>3/1/1/v/6</td>
</tr>
<tr>
<td>19 Digitális technika 2</td>
<td>4/1/0/v/6</td>
</tr>
<tr>
<td>20 Jelek és rendszerek 1</td>
<td>4/2/0/v/6</td>
</tr>
<tr>
<td>21 Jelek és rendszerek 2</td>
<td>3/3/0/v/6</td>
</tr>
<tr>
<td>22 Elektrotechnika</td>
<td>4/0/1/v/6</td>
</tr>
<tr>
<td>23 Elektromágneses terek alapjai</td>
<td>3/1/0/v/5</td>
</tr>
<tr>
<td>24 Elektronika 1</td>
<td>3/2/0/v/6</td>
</tr>
<tr>
<td>25 Elektronika 2</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>26 Mikroelektronika</td>
<td>3/0/1/v/5</td>
</tr>
<tr>
<td>27 Mérőtechnika</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>28 Villamos energetika</td>
<td>3/1/1/v/5</td>
</tr>
<tr>
<td>29 Infokommunikáció</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>30 Elektronikai technológia</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>31 Szabályozástechnika</td>
<td>3/2/0/v/5</td>
</tr>
<tr>
<td>Differenciált szakmai ismeretek (44 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>Differenciált szakmai ismeretek (44 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>32 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>33 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>34 Szakirány tantárgy</td>
<td>3/1/0/v/4</td>
</tr>
<tr>
<td>35 Laboratórium 1</td>
<td>0/0/4/f5</td>
</tr>
<tr>
<td>36 Laboratórium 2</td>
<td>0/0/3/f4</td>
</tr>
<tr>
<td>37 Szakirány laboratórium</td>
<td>0/0/3/f4</td>
</tr>
<tr>
<td>38 Önálló laboratórium</td>
<td>0/0/4/f5</td>
</tr>
<tr>
<td>39 Szakdolgozat</td>
<td>0/10/0/f15</td>
</tr>
<tr>
<td>Szabadon választható tantárgyak (10 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>Szabadon választható tantárgyak (10 kreditpont)</td>
<td></td>
</tr>
<tr>
<td>40 Szabadon választható tantárgy 1</td>
<td>4/0/0/v4</td>
</tr>
<tr>
<td>41 Szabadon választható tantárgy 2</td>
<td>4/0/0/v4</td>
</tr>
<tr>
<td>42 Szabadon választható tantárgy 3</td>
<td>2/0/0/f2</td>
</tr>
<tr>
<td>Kritériumtartályak</td>
<td></td>
</tr>
<tr>
<td>Kritériumtartályak</td>
<td></td>
</tr>
<tr>
<td>43 Testnevelés 4</td>
<td>0/2/0/a/0</td>
</tr>
<tr>
<td>44 Szakmai gyakorlat</td>
<td>6 hét/a/0</td>
</tr>
<tr>
<td>Ajánlott tantárgyak</td>
<td></td>
</tr>
<tr>
<td>Ajánlott tantárgyak</td>
<td></td>
</tr>
<tr>
<td>45 Tanköri foglalkozás</td>
<td></td>
</tr>
<tr>
<td>Összes heti óra (krit. tárgyak nélkül)</td>
<td></td>
</tr>
<tr>
<td>Összes credit-pontszám</td>
<td></td>
</tr>
<tr>
<td>Vizsgázás</td>
<td></td>
</tr>
</tbody>
</table>

Jelölés: x/y/z/v vagy f/kredit: x: előadási órák, y: gyakorlati órák, z: laboratórium órák száma, v: vizsga, f: félévközi jegy, kredit: a tantárgyhoz rendelt kreditpontok száma. 1 kredit: 30 (átlagos) hallgatói munkaóra.

4 Felmenő rendszerben: Az új tantárgykódú Digitális technika 2 tantárgy (VIIIA106) először a 2011/12 tanév tavaszi félévében kerül előadásra

5 A tanulmányait 2010. szeptemberében kezdő évfolyamtól kezdődően (felmenő rendszerben) csak 2 db Testnevelés tantárgy teljesítése kötelező, 2 db teljesítése pedig ajánlott.
I.3 A tanszékek teljes és rövidített nevei

Automatizálási és Alkalmazott Informatikai Tanszék (AAIT)
Elektronikus Eszközök Tanszéke (EET)
Elektronikai Technológia Tanszék (ETT)
Hálózati Rendszerek és Szolgáltatások Tanszék (HIT) – korábban Híradástechnikai Tanszék
Irányítástechnika és Informatika Tanszék (IIT)
Méréstechnika és Információs Rendszerek Tanszék (MIT)
Számítástudományi és Információelméleti Tanszék (SzIT)
Szélessávú Hírközlés és Villamosságtan Tanszék (HVT)
Távközlési és Médiainformatikai Tanszék (TMIT)
Villamos Energetika Tanszék (VET)
II. MÉRNÖK INFORMATIKUS ALAPSZAK

A képzés célja olyan mérnök informatikusok képzése, akik képesek műszaki informatikai és információs infrastrukturális rendszerek és szolgáltatások telepítésére és üzemeltetésére, valamint azok adat- és programrendszereinek tervezési, fejlesztési feladatainak ellátására, továbbá kellő mélységű elméleti ismeretekkel rendelkeznek a képzés második ciklusában történő folytatásához.

Az alapfokozat birtokában a mérnök informatikusok képesek:
- az informatikai módszereit igénylő műszaki alkotások tervezési, fejlesztési és létrehozási feladatainak ellátására;
- informatikai és információs infrastrukturális rendszerek telepítési és üzemeltetési feladatainak ellátásához szükséges mérnöki gyakorlati módszerek alkalmazására;
- programozásra objektum orientált és vizuális programozási környezetben;
- szoftverfejlesztési metodikák alkalmazására, fejlesztési eszközök használatára;
- információs rendszerek modellezésére, a teljesítmény és megbízhatósági jellemzők szimulációs vizsgálataira;
- korszerű, általános célú operációs rendszerek telepítésére, konfigurálására, hibaelhárítására, üzemeltetésére, továbbfejlesztésére.
- kliens-szerver rendszerek programozására, WEB programozásra
- vállalati információs rendszerek folyamatalapú funkcionális tervezésére és készítésére valamely „enterprise modeller” típusú eszköz segítségével;
- döntéstámogató rendszerek tervezésére, készítésére, működtetésére.

Az alapképzés során megszerzendő ismeretek (210 kredit):

<table>
<thead>
<tr>
<th>Természettudományos alapismeretek</th>
<th>45 kreditpont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazdasági és humán ismeretek</td>
<td>20 kreditpont</td>
</tr>
<tr>
<td>Szakmai törzsanyag</td>
<td>93 kreditpont</td>
</tr>
<tr>
<td>Differenciált szakmai ismeretek</td>
<td>42 kreditpont</td>
</tr>
<tr>
<td>Szabadon választható tantárgyak ismeretkörei</td>
<td>10 kreditpont</td>
</tr>
<tr>
<td>Kritériumtárgyak</td>
<td></td>
</tr>
</tbody>
</table>

Előtanulmányi rend:
Előtanulmányi rend a mérnökök informatikus BSc szakon
2013. április 23.

1. Analízis 1
 - Analízis 2
 - Fizika 1
 - Valószínűségszámítás
 - Jelkép és rendszerek
 - Szabályozástechnika
 - Elektronika
 - Mesteresés intelligencia
 - Adatbázisok
 - Szparaméter lehetőségek
 - Szoftver technikák
 - Szoftver labor
 - Számítógép, architektúrák
 - Mérés labor

2. BSZ 1
 - BSZ 2
 - Kódolástechnika
 - Algoritmuselmélet
 - Szoftver technikák
 - Szoftver labor
 - Számítógép, hálózatok
 - Operációs rendszerek
 - Mérés labor

3. Programozás alapjai 1
 - Programozás alapjai 2
 - Szoftver technikák
 - Szoftver labor
 - Számítógép, architektúrák
 - Mérés labor

4. Beszédfelismerés
 - Rendszermodellezés
 - Deklaratív programozás

A szakirányra kerüléshez legalább 120 kredit, valamint a mintatartalmi első 3 szeméterre előírt taniátványok teljesítése szükséges (a testneveles kivétellel).

- Folytonos vonal & nyil: Kredit megtekerzése kötelező, a tárgy felvételéhez.
- Szaggatott vonal & nyil: Aláírás megszerzése kötelező, a tárgy felvételéhez.
- Folytonos vonal & pont: Legkorábban ez a tárggyal vehető fel együtt.
- Kék háttérről: A szakirányba kerüléshez szükséges a kredit teljesítése.
- Narancs háttérről: Előre az a hovon tárgy közül egyet kell teljesíteni.

2013. június 24.
II.1 Természettudományos alapismeretek

Analízis 1

(TE90AX04, 1. szemeszter, 4/2/0/v/7 kredit, Analízis Tanszék)

1. A tantárgy célkitűzése
A mérnök informatikus alapszak kötelező tantárgya.

2. A tantárgy tematikája

2. Egyváltozós függvények folytonossága és differenciálhatósága: Elemi függvények és inverzeik. Differenciálható függvények tulajdonságai, középértéktételek, L’Hospital szabály. Függvényvizsgálat, paraméteresen és polárkoordinátában adott függvények

3. Egyváltozós függvények integrálása: Az integrálás technikája, Newton-Leibniz formula, az integrálszámítás alkalmazása, impropius integrál

Analízis 2

(TE90AX05, 2. szemeszter, 4/2/0/v/7 kredit, Analízis Tanszék)

1. A tantárgy célkitűzése
A mérnök informatikus alapszak kötelező tantárgya.

2. A tantárgy tematikája
1. Differenciálegyenletek: szétválasztható változójú, lineáris elsőrendű, magasabbrendű lineáris állandó együtthatós differenciálegyenletek

2. Sorok: Numerikus sorok konvergencia kritériumai, hatványsorok, Taylor sor

3. Többváltozós függvények: Határérték, folytonosság, differenciálhatóság, iránymenti derivált, láncszabály, magasabbrendű parciális deriváltok és differenciálók. Szélsőérték, kettős és hármasintegrál kiszámítása. Integrál transzfomáció, Jacobi mátrix

Valószínűségszámítás

(VISZA208, 3. szemeszter, 3/1/0/v/4, SZIT)

1. A tantárgy célkitűzése
A sztochasztikus modellalkotás alapjainak elsajátítása

2. A tantárgy tematikája
1. Alapfogalmak, axiómák, a valószínűség tulajdonságai
2. Feltételes valószínűség, események függetlensége, Markov-lánc fógalma
3. Klasszikus valószínűség, geometriai valószínűség
4. Valószínűségi változó, eloszlásfüggvény, diszkrét és folytonos eset
5. Nevezetes diszkrét v.v.: binomiális, Poisson, geometriai
6. Nevezetes folytonos v.v.: egyenletes, exponenciális, normális
7. Várhatóérték, szórás, momentumok, Markov- és Csebisev-egyenlőtlenség
8. Együttes- és vetületi eloszlásfüggvény, függetlenség, konvolúció
9. Kovariancia, korrelációs együttható, két-dimenziós normális eloszlás, polinomiális eloszlás
10. Feltételes eloszlás, feltételes várhatóérték, lineáris regresszió
11. Nagy számok törvényei, centrális határeloszlás-tételek
12. A matematikai statisztika alapfogalmai: statisztikai mező, minta, paraméter, statisztika
13. Becslés tulajdonságai: torzitatlanság, konzisztencia, hatásosság; átlag, szórás becslése, maximum likelihhood becslés
14. Student eloszlás, konfidence-intervallum, paraméteres próbák

Bevezetés a számításelméletbe 1
(BMEVISZA103, 1. szemeszter, 2/2/0/v/5 kredit, SZIT)

1. A tantárgy célkitűzése
A mérnökinformatikus tanulmányokhoz szükséges legfontosabb diszkrét matematikai ismeretek elsajátítása, szemléletmódjának kialakítása.

2. A tantárgy tematikája
A) Komplex számok, kanonikus és trigonometrikus alak, műveletek, egységgyökök.
B) Végtelen halmazok számossága, hatványhalmaz, kontinuum-hipotézis.
C) A lineáris algebra alapjai
1) A 3-dimenziós analitikus geometria elemei: sík és egyenes.
2) Vektortér fogalma, altér, generátorrendszer, lineáris függetlenség, bázis, dimenzió.
3) Lineáris leképezések.
4) Lineáris egyenlőrendszer megoldhatósága, egyértelműsége.
5) Determináns definíciója, tulajdonságai.
6) Mátrixok, alapműveletek, rang, inverz.
7) Lineáris transzformációk és négyszétes mátrixok sajátértékei, sajátvektorai.
D) Kombinatorikai alapismeretek (permutációk, variációk, kombinációk), binomiális tétel.
E) Fejezetek a gráfelméletből
1) Gráfelméleti alapfogalmak, út, kör, összefüggőség, fa.
2) Fák száma, minimális költségű feszítőfa keresése.
3) Síkbarajzolhatóság, dualitás.

Bevezetés a számításelméletbe 2
(BMEVISZA110, 2. szemeszter, 2/2/0/v/4 kredit, SZIT)

1. A tantárgy célkitűzése
Az mérnökinformatikus tanulmányokhoz szükséges legfontosabb diszkrét matematikai ismeretek elsajátítása, szemléletmódjának kialakítása.

2. A tantárgy tematikája
A) Fejezetek a gráfelméletből
1) Gráfok pont- és élszínezése, Mycielsky konstrukciója, perfekt gráfok. Négy- és ötszintet.
2) Euler- és Hamilton-tételkör.
3) Párosítások, König, Hall és Tutte tételei. Gallai tételei.
4) Hálózati folyamok. Menger-tételkör, magasabb összefüggőség.
5) Aciklikus irányított gráfok, PERT-módszer.
6) Gráfok mátrixai.
B) A számelmélet alapjai
1) Oszthatóság, felbonthatatlan- és primszámok, a számmelmélet alaptétele, euklideszi algoritmus.
2) Kongruencia, maradékosztályok, Euler-Fermat tétele.
3) Lineáris kongruenciák megoldása.
4) Prímtesztelés, nyilvános kulcsú titkosítás.
C) Az absztrakt algebra elemei
1) Félcsoport, csoport fogalma.
2) Nevezetes csoportok: ciklikus csoport, szimmetrikus csoport, diédercsoport.
3) Csoportokkal kapcsolatos alapfogalmak: izomorfia, elem rendje, részcsoport, mellékosztály.
4) Gyűrű és test fogalma, nevezetes példák.

Kódolástechnika
(VIHIA209, 3. szemeszter, 3/1/0/f/5 kredit, HIT)

1. A tantárgy célkitűzése
A tantárgy célja az információk tárolása illetve továbbítása során felmerülő három alapvető kódolási feladat fontosabb algoritmusainak megismertetése. Ezen területek az információ kisebb méretben történő ábrázolásához (tömörítő kódolás), hibázó kommunikációs csatornán történő továbbításához illetve hibázó tárakon történő tárolásához (hibakontroll kódolás) valamint érzékeny információk intelligens támadók elleni védelméhez (biztonsági kódolás) kapcsolódnak

2. A tantárgy tematikája

Algoritmuselmélet
(VISZA213, 4. szemeszter, 2/2/0/v/5 kredit, SZIT)

1. A tantárgy célkitűzése
Az algoritmusok tervezésével, elemzésével kapcsolatos alapvető módszerek, készségek elsajátítása.

2. A tantárgy tematikája
Kereső algoritmusok. Alapvető adatszerkezetek: keresőfa, kiegyensúlyozott keresőfa (AVL-fa), B-fa, hash-tábla, kupac.
Rendező algoritmusok: buborék rendezés, beszúrásos rendezés, összefűzés, kupacos rendezés, gyorsrendezés, láda- és radixrendezés.
Alsó becsülés az összehasonlító rendezéseknél lépésszámlára.
Alapvető gráfelméleti algoritmusok:

Általános algoritmus-tervezési módszerek: mohó algoritmus, oszd meg és uralkodj, dinamikus programozás, elágazás és korlátozás.

Közlelő algoritmus a ládakapoláncs és az euklidész utazóügynek problémára. A bonyolultságelmélet alapjai: kiszámíthatóság, NP, NP-teljeség

Fizika 1

(TE11AX03, 2. szemeszter, 3/1/0/v/4 kredit, Fizika Tanszék)

1. A tantárgy célkitűzése
A tantárgy célja a középiskolában megszerzett ismeretek rendszerezése, kiegészítése. A korszerű természettudományos világszemlélet kialakítása és a modellalkotási kézség fejlesztése. Olyan egyetemi szintű fizikai ismeretek elsajátítása amely feltétlenül szükséges a szaktárgyak megalapozásához valamint elengedhetetlen a XXI. századi technika világában eligazodni és alkotni akaró mérnök munkájához.

2. A tantárgy tematikája

GYAKORLAT(HÉT 1 óra) Kiscsoportos (tanköri) foglalkozás. Témája az előadáson elhangzott tananyagnak feladatmegoldásokon keresztüli megértése és elmélyítése. A gyakorlatokon a Tankönyvben lévő kidolgozott "Példák" és kiválasztott "Feladatok" szerepelnek.

Egyéni, önálló gyakorláson a tankönyvből feladatokat jelölünk ki.

Fizika 2

(TE11AX04, 3. szemeszter, 3/1/0/v/4 kredit, Fizika Tanszék)

1. A tantárgy célkitűzése
A tantárgy célja a középiskolában megszerzett ismeretek rendszerezése, kiegészítése. A korszerű természettudományos világszemlélet kialakítása és a modellalkotási kézség fejlesztése. Olyan egyetemi szintű fizikai ismeretek elsajátítása amely feltétlenül szükséges a szaktárgyak megalapozásához valamint elengedhetetlen a XXI. századi technika világában eligazodni és alkotni akaró mérnök munkájához.

2. A tantárgy tematikája
II.2 Gazdasági és humán ismeretek

A gazdasági és humán ismeretek tantárgyblokk két részből tevődik össze: 3 kötelező tantárgyból (Mikro- és makroökonómia, Menedzsment és vállalkozásgazdaságtan, Üzleti jog) és a hallgatók által kötelezően választható tantárgylista további 5 x 2/0/0/2 kiméretű tantárgyából.

Mind a BSc, mind az MSc képzésben szerepelnek kötelezően választható tantárgyak a gazdasági és humán ismeretek témakörében. A két tantárgylista különböző tantárgyakat tartalmaz, a hallgatók csak a saját képzési formájuknak megfelelő listából választhatnak.

A hallgatók kötelezően felveendő a következő gazdasági és humán ismeretek tantárgyak közül választhatnak:

BMGT35A001 Pénzügyek
BMGT20V100 Innovatív vállalkozások indítása és működtetése
BMGT35A003 Gazdaságpolitika
BMGT42A001 Környezetgazdaságtan
BMGT52A013 Szociális készségfejlesztés
BMGT35A002 Számvitel
BMEVITMAK47 Mérnöki menedzsment módszerek
BMGT20A002 Marketing
BMGT52A002 Pszichológia
BMGT52A001 Ergonómia
BMGT43A002 Szociológia
BMEVITAK49 Adatvédelem és információszabadság
BMEVIVEAK48 Mérnöki problémamegoldás
BMEVITMAK48 Érzelmek logikája
BMEVITMAK49 Digitális életmód

A BMGT… kódú tantárgyak tematikái a GTK honlapján találhatók meg.
Mikro- és makroökonómia

(GT30A001, 1. szemeszter, 4/0/0/v/4 kredit, Közgazdaságtan Tanszék)

1. A tantárgy célkitűzése
Olyan közgazdasági ismeretek nyújtása, melyek segítségével a hallgatók eligazodnak a gazdasági környezet mikro- és makroszfárájának aktuális kérdéseiben, megértik azt, hogy a folyamatos műszaki fejlődés és innovatív tudás az alapja annak, hogy olyan termékek és eljárások szülessenek, amelyek nemcsak hazai, hanem nemzetközi szinten is jövedelmezőek az egyén, a vállalat és az ország számára. Ha értik a gazdasági folyamatok és főbb összefüggések lényegét, akkor saját maguk is tudják „értelmiségi módon” kedvezően befolyásolni saját környezetüket, és elősegíthetik a gazdaság fejlődését rövid és hosszú távon.

2. A tantárgy tematikája
1. Gazdálkodás főbb alapelvei, a piac működése A gazdaság főbb szereplői: háztartások (fogyasztó), vállalkozások, állam és külföld. Döntési motivációk.
5. A termelési tényezők piaca: beruházási, befektetési döntések optimuma.
6. Az állam szerepe a gazdaságban.
7. Nemzetgazdasági teljesítmények mérése: GO, GDP, GNP, GNI, GNDI.
9. Pénz szerepe a makrogazdaságban, a modern pénzügyi rendszer működése, a monetáris politika eszközének, a pénzforgalom szabályozása.
10. A kormányzat fiskális politikája és eszközei, a költségvetési kiadások hatása a makrogazdasági egyensúlyra.
11. Árupiac és pénzpiac makroszintű összekapcsolása: az IS-LM modell.

Menedzsment és vállalkozásgazdaságtan

(GT20A001, 2. szemeszter, 4/0/0/f/4 kredit, Menedzsment és Vállalatgazdaságtan Tanszék)

1. A tantárgy célkitűzése
A tantárgy oktatásának célja, hogy megismertesse a hallgatókat a szervezetek és a menedzsment feladatának és működésének alapelvéivel. A tantárgy keretében röviden bemutatjuk a gazdálkodás- és szervezéstudomány legfontosabb részterületeit és aktuális problémáit. Ezt követően a vállalkozásgazdaságtan alapjaival foglalkozunk az alábbi fő témaköröket tárgyaljuk:
- az üzleti vállalkozás célja, termelő és szolgáltató folyamatok, termelésirányítás, költséggazdálkodás, befektetés és finanszírozás.

2. A tantárgy tematikája
- Vállalkozásgazdaságtan közgazdasági háttere: érték, hasznosság, profit, alternatív költség kockázat fogalma, értelmezése
Vállalkozásgazdaságtan elemzési alapjai: pénzáramlások meghatározása, tőkeköltség, fő gazdasági mutatók, elemzések
 - Menedzsment alapok: a vállalat alapvető erőforrásai és folyamatai; a vállalat, mint szervezet; funkciók és menedzszeri szerepek; a csoportmunka jelentősége és eredményei; kommunikáció a szervezetben; vállalatirányítási rendszerek; a termék fogalma, életciklus;
 - Minőségmenedzsment: a minőségmenedzsment fejlődésének fontosabb szakaszai; a minőségügyi rendszer alapelveinek áttekintése az ISO 9001:2000 előírásai alapján; a Total Quality Management (TQM) alapelveinek összefoglalása; a folyamatos javítás elve és módszerei;
 - Termelőgazdaságtan: a termelőrendszerek definíciója, fejlődése; a termelő- és szolgáltatórendszerek
20 osztályozása; a készletek szerepe a termelésben, készletekkel kapcsolatos költségek; egyszerű készletgazdálkodási rendszerek;
Költséggazdálkodási rendszerek: költségszámlítási rendszerek fejlődése, szintjei; költségek csoportosítási módszerei; Tradicionális költségszámlítási modellek; ár-költség-nyereség-fedezet struktúra (AKFN modell); standardköltség-számítás; tevékenységépület költségsszámlítás (ABC). Kíhasználhatlan kapacitás költsége;

üzleti jog

(gt55a001, 3. szemeszter, 2/0/0/2 kredit, üzleti jog tanszék)

1. A tantárgy célkitűzése
A villamosmérnök és mérnök informatikus hallgatók a félév során áttekintést/alapismereteket szerezzenek a magyar jogrendszer működéséről – az üzleti élet alapvető jogi területeiről és azok összefüggéseiről. A tantárgy hangsúlyosan tárgyalja a társasági jog és érintkező területeinek (versenyjog, fizetésképtelenség joga) valamint a kötelmi jog (különösen a gazdasági szerződések jogának) szabályozását

2. A tantárgy tematikája
Jogi- és államtani alapvetés (A jog fogalma, – Jogviszonytán – a Jogalkalmazás rendszere)
Államtani alapvetés (Államfogalom – államszervezet)
Kötelmi jogi alapok, alapvetés; Szabályozási környezet – a kötelem és a szerződés fogalma, a szerződéskötés folyamata; Szerződés módosítása; Szerződések megszűnése; Szerződések tipizálása
Szerződésszegés - Érvénytelenség-hatálytalanság – Szerződést biztosító mellékko relezezettségek
Egyes gazdasági szerződéstípusok – tipikus és atipikus szerződések - adási és megbízási kötelek eredménykötelmek, vállalkozási szerződés, fúvarozás és szállítmányozás, a gazdasági forgalom egyéb szerződései
Társasági- és cégjogi alapok: a szervezeti jogalany fogalma, a gazdasági társaság fogalma, a hatályos társasági jog rendszere
A gazdasági társaságok létszakai és szervezete
A jogi személyiség nélküli kistársaságok, a közkereseti- és a betéti társaság
A jogi személy társasági formák; a korlátolt felelősségű társaság és a részvénytársaság
A társasági jog kapcsolódó jogterületei; Fizetésképtelenségi jog – csőd- és felszámolás
Versenyjog – tisztességtelen verseny elleni szabályok és a versenykorlátozások tilalma
II.3 Szakmai törzsanyag

Jelek és rendszerek
(VIHVA214, 4. szemészter, 3/1/0/f/5 kredit, HVT)

1. A tantárgy célkitűzése
A tantárgy célja, hogy a hallgatót megismertesse a jel- és rendszerelmélet legfontosabb fogalmaival, összefüggéseivel és matematikai eszköztárával. A tananyag gerincét a folytonos és diszkret idejű, lineáris, invariáns rendszerek analízise alkotja, amelynek módszereit az idő-, a frekvencia- és a komplex frekvencia-tartományban tárgyaljuk. Az elméleti anyag illusztrálásaként gyakorlati példák bemutatására kerül sor.

2. A tantárgy tematikája

Elektronika
(VIEEA307, 5. szemészter, 3/1/0/f/4 kredit, EET)

1. A tantárgy célkitűzése
A tantárgy célkitűzése, hogy megismertesse a hallgatókat a számítástechnika legfontosabb hardware elemeinek működésével, bemutassa a számítástechnikának a mikroelektronika által biztosított lehetőségeit és korlátait.

2. A tantárgy tematikája
Félvezető memóriák. Maszk programozott ROM, EPROM, EEPROM, FLASH memóriák, statikus és dinamikus RAM memóriák.
Integrált áramkörök tesztelése, a boundary scan áramkör.
ASIC (application specific integrated circuit) áramkörök és tervezési módszereik.
Képi megjelenítő eszközök, CRT, LCD, plazma display.
MEMS (micro electro mechanical systems) struktúrák.

Szabályozástechnika
(VIAUA309, 5. szemeszter, 3/1/0/0/4 kredit, AAIT)

1. A tantárgy célkitűzése
A technológiai, élettani, gazdasági és környezeti folyamatok irányítása a mérnöki tevékenységek fontos, széleskörű ismereteket, absztrakciós és alkalmazói képességeket egyaránt igénylő feladatai közé tartozik. A tantárgy az irányítástechnika alapjaival, szabályozási rendszerek működési elveivel, analízisével, szintézisével, valamint a számítógépes támogatás nyújtotta eszközök alkalmazástechnikájával ismerteti meg a hallgatókat, miközben alapvető mérnökökre informatikus szemléletformáló szerepet tölt be. Felkészít az analóg és digitális szabályozási körök vizsgálatára, a különböző műszaki informatikai alkalmazásokban, valósidejű beágyazott rendszerekben megjelenő leggyakoribb szabályozási feladatok megértésére és megoldására, irányítástechnikai szoftver rendszerek, gyors prototípusok fejlesztésére, valamint a további speciálisabb ismeretbővítésre a szakirányú képzések keretében.

2. A tantárgy tematikája
Folyamatok modellezése és rendszertechnikai leírása: Nemlineáris rendszerek egyensúlyi helyzete, linearizálás. Dinamikus rendszerek állapotegyenlete, a tranzíensek számítása. Átviteli függvény, pólus és zérushely, frekvenciafüggvény, Nyquist és Bode diagram.

Kitekintés: Folyamat identifikáció; optimális és robusztus tervezés; adaptív szabályozás.
Digitális technika 1
(VIMIA102, 1. szemeszter, 3/1/0/f/5 kredit, MIT)

1. A tantárgy célkitűzése
A tantárgy célkitűzése a hallgatók megismertetése a digitális technika alapjaival. Gyakorlat szerzése a kombinációs és sorrendi hálózatok tervezésében és analízisében, alapvetően SSI és MSI elemek felhasználásával. Processzoros rendszerek alapvető kérdéseinek tárgyalása: alapelvek, felépítés, működés.

2. A tantárgy tematikája

Digitális technika 2
(VIMIA111, 2. szemeszter, 3/1/0/v/5 kredit, MIT)

1. A tantárgy célkitűzése
A tantárgy célkitűzése a hallgatók megismertetése a digitális technika alapvető sajátosságaival. Gyakorlat szerzése a kombinációs és sorrendi hálózatok tervezésében és analízisében, alapvetően SSI és MSI elemek felhasználásával. Processzoros rendszerek alapvető kérdéseinek tárgyalása: alapelvek, felépítés, működés.

2. A tantárgy tematikája

Számítógép architektúrák
(VIHIA210, 3. szemeszter, 2/2/0/v/5 kredit, HIT)

1. A tantárgy célkitűzése
A számítógép-architektúrák alapfogalmainak, analízisének, alkalmazási és tervezési módszereinek olyan tárgyalása, mely az előismerrétek felhasználásával kellő elvi alapot ad a további speciális ismeretbővítésre és az alapvető hardver és szoftver feladatok formális kezelésére és gyakorlati megvalósítására.
2. A tantárgy tematikája
Architektúra fogalma; hardver és szoftver kapcsolata.
Hagyományos számítógép-architektúrák.
Jellegzetes processzor-családok.
Tárolókezelési módszerek.
Tömb kapcsolás, indexelt lekpézés, virtuális tárkezelés, cache tároló.
Csökkentett utasításkészletű számítógép, superskalár architektúra, társprocesszor.
Perifériakezelési módszerek: eszkökszintű és logikai kezelés.
Multiprocesszoros struktúrák: lazán csatolt és szorosan csatolt rendszerek.
Multiprocesszoros rendszerek operációs rendszerei: útvonal-irányítás, ütemezés, operációs rendszer magok.
Adatáramlásos modell. Utasításszintű és eljárásszintű adatáramláson alapuló architektúra.
Információ-vezérelt modell. Mesterséges intelligencia: asszociatív számítógép és neurális hálózatok

Számítógép hálózatok
(VIHIA215, 4. szemészter, 3/1/0/v/4 kredit, HIT)

1. A tantárgy célkitűzése
Az „Számítógép-hálózatok” tantárgy alapvető célja, hogy megismertesse a számítógép hálózatok felépítésének és működésének alapvető elveit.
A tantárgy oktatása törekszik arra, hogy a későbbi, távközlési hálózatokkal foglalkozó közös tantárgyhoz, valamint a szakirány-tárgyakhoz az architektúrák és protokollok, különösen az IP-alapú kommunikáció terén biztos alapokat nyújtson.

2. A tantárgy tematikája
A) Bevezetés
 Hálózatok és rendszerek bevezetése példákon
 A fizikai szintű kommunikáció alapjai
B) Elvek és technikák
 Többszörös hozzáférés
 Áramkörkapcsolás, virtuális áramkörkapcsolás
 Hullámhossz-kapcsolás
 Csomagkapcsolás
 Gyors csomagkapcsolás, ATM
 Összeköttetés-alapú és összeköttetés-mentes hálózatok
 Hívásvezérlés
 Címzés
 Routing
 Hibavédelem
 Ütemezés (scheduling)
 Forgalmomennyiség
 Szolgáltatás-mennyiség
 Hálózat-menedzsment
 Protokoll-architektúrák alapelvei: rétegezés
C) Architektúrák és protokollok
 Protokoll-referencia modellek és -architektúrák
 LAN-ok
 LAN-ok összekapcsolása
Adatkapcsolati rétegbeli kommunikáció
IP, IPv6, Mobile IP, VPN
Transzport: TCP, UDP
 Média-átvitel (RTP, RTCP, RTSP etc.)
 Szolgáltatás-minőségét támogató protokollok: IntServ, DiffServ
 Hívásvezérlés távközlő hálózatokban és az NGN-ben
 Menedzsment-protokollok
 Alkalmazások

Távközlő hálózatok és szolgáltatások

1. A tantárgy célkitűzése
Elméleti és gyakorlati ismeretek nyújtása távközlő hálózatok témaköréből, azaz a hálózatok belső működése és a nyújtott szolgáltatások megismerésére, a rendszerteknikai elemek kiválasztásához, alkalmazásához, a rendszerteknikai tervezéséhez, az üzemeltetéshez, a különböző szolgáltatók hálózatainak együttműködéséhez szükséges legfontosabb alapismeretek elsajátítása.

2. A tantárgy tematikája
Bevezetés, technikatörténeti áttekintés.
A távközlés alapismeretei: távközlő hálózati alapfogalmak, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok
Technológiai, fizikai, gazdasági háttérismerek. Fizikai alapok: vezetékes és rádiós átvitel, analóg és digitális beszédfelvétel, távbeszélő hálózatok topológiája, számítógépes megvalósítás. ISDN hálózatok, új generációs hálózatok

IP hálózatok elérése távközlő hálózatokon (beszédsávi modemek, xDSL). TriplePlay: beszédfélvétel, TV és Internet egyetlen csatornán.
IP hálózatok elérése kábel-TV hálózatokon.
VoIP hálózatok.
Kapcsolótechnika: kapcsolóközpontok felépítése, 2/4-huzalú átalakítás, kapcsolómátrix megvalósítása tér-, időkapcsolóval, illetve ezek kombinációjával. IP alapú kapcsolás.
Mobiltelefon-rendszer: cellás hálózatok elvei, GSM, UMTS és továbbfejlesztései, műholdas, készenléti rendszerek.
Kapcsolt optikai hálózatok.
Passzív optikai hálózatok. Távközlő hálózatok telepítése és üzemeltetése.
Mérés laboratórium 1.
(VIMIA211, 3. szemeszter, 0/0/2/f/2 kredit, MIT)

1. A tantárgy célkitűzése
A számítástechnikában használatos alapvető mérési eszközök és vizsgálati módszerek megismertetése és alkalmazásának gyakorlása, a hallgatók szakma-specifikus gyakorlati ismereteinek elmélyítése, komplex rendszerek önálló vizsgálatához szükséges készségek kifejlesztése. Ennek érdekében a hallgatók előzetes felkészülést, és a végrehajtás során intenzív közreműködést igénylő feladatokat oldanak meg.

2. A tantárgy tematikája
A mérési gyakorlatok előtt egy külön foglalkozáson történik a laboratórium bemutatása, a követelmények ismertetése és a baleseti és tűzvédelmi oktatás. Az ezt követő rendes, négy órás mérések a következők:
 1. sz. mérés: A tervező eszköz bemutatása
 2. sz. mérés: Mérések logikai állapotanalizátorral
 3. sz. mérés: Funkcionális elemekből felépített logikai hálózat tesztelése
 4. sz. mérés: Interfész vizsgálata logikai analizátorral
 5. sz. mérés: Logikai hálózat tervezése hardverleíró nyelv segítségével

Mérés laboratórium 2.
(VIMIA216, 4. szemeszter, 0/0/2/f/2 kredit, MIT)

1. A tantárgy célkitűzése
A számítástechnikában használatos alapvető mérési eszközök és vizsgálati módszerek megismertetése és alkalmazásának gyakorlása, a hallgatók szakma-specifikus gyakorlati ismereteinek elmélyítése, komplex rendszerek önálló vizsgálatához szükséges készségek kifejlesztése. Ennek érdekében a hallgatók előzetes felkészülést, és a végrehajtás során intenzív közreműködést igénylő feladatokat oldanak meg.

2. A tantárgy tematikája
A mérési gyakorlatok előtt egy külön foglalkozáson történik a laboratórium bemutatása, a követelmények ismertetése és a baleseti és tűzvédelmi oktatás. Ez t követik a rendes, négy órás mérések, melyek tematikája:

Mérés laboratórium 3.
(VIMIA312, 5. szemeszter, 0/0/2/f/2 kredit, MIT)

1. A tantárgy célkitűzése
A számítástechnikában használatos alapvető mérési eszközök és vizsgálati módszerek megismertetése és alkalmazásának gyakorlása, a hallgatók szakma-specifikus gyakorlati ismereteinek elmélyítése, komplex rendszerek önálló vizsgálatához szükséges készségek kifejlesztése. Ennek érdekében a hallgatók előzetes felkészülést, és a végrehajtás során intenzív közreműködést igénylő feladatokat oldanak meg.

2. A tantárgy tematikája
A mérési gyakorlatok előtt egy külön foglalkozáson történik a laboratórium bemutatása, a követelmények ismertetése és a baleseti és tűzvédelmi oktatás. Ezt követik a rendes, négy órás mérések, melyek tematikája:
 Jelátviteli csatornák vizsgálata, a fontos paraméterek mérése. Analóg illesztő elemek (jel kondicionáló és védelmi elemek, műveleti erősítők, műőerősítők) vizsgálata. (4 óra)
Az analóg-digitális átalakítás vizsgálata, átalakítók alapvető jellemzőinek meghatározása D/A átalakítók alapvető jellemzőinek vizsgálata. (4 óra)

Virtualis műszerek. Grafikus programozási nyelv használata a műszerezésben. Mérésadatgyűjtő rendszer kialakítása programozható mérőegységek mellett. (2*4 óra)

Egy beágyazott operációs rendszer vizsgálata. A hallgatók megismerkednek a beágyazott operációs rendszer fogalmával. Ezt követően a hallgatók megismerkednek a mC/OS beágyazott operációs rendszer felépítésével, majd pedig ezen operációs rendszer alatt végzik a méréseket az alábbi témakörökben: taszok kezelése (létrehozásuk, megszüntetésük, stack-méret ellenőrzése stb.); az operációs rendszer egyéb szolgáltatásai (memóriakezelés, időkezelés). (4 óra)

Mérés laboratórium 4.

(VIMIA315, 6. szemeszter, 0/0/2/0/2 kredit, MIT)

1. A tantárgy célkitűzése
A számítástechnikában használatos alapvető mérési eszközök és vizsgálati módszerek megismerése és alkalmazásának gyakorlása, a hallgatók szakma spesifikus gyakorlati ismereteinek elmélyítése, komplex rendszerek önálló vizsgálatához szükséges készségek kifejlesztése. Ennek érdekében a hallgatók előzetes felkészülést és a végrehajtás során intenzív közreműködést igénylő feladatokat oldanak meg az operációs rendszerek, a számítógép-hálózatok, a távközlő hálózatok és szolgáltatásaik témakörében.

2. A tantárgy tematikája
A tantárgy öt négyórás laborfoglalkozásokból áll, három a hálózatokkal, kettő az operációs rendszerekkel foglalkozik. A laboratórium bemutatása, a követelmények, tudnivalók ismeretében, a baleseti és tűzvédelmi oktatás a legelső laborfoglalkozáson lesz (0A, 0B jelű foglalkozás).

A laborfoglalkozások rövid tematikája:

1. Ethernet és TCP/IP protokollok vizsgálata (1 x 4 óra)
Ethernet hálózati interfészek alapvető TCP/IP beállításainak megismerése (IP címtartományok; default gateway, subnet broadcast IP cím, DHCP szerver címe; DNS szerver; Internet útvonalak). Ethernet címek és IP címek összerendezése (ping, route print; ARP protokoll; analízis/megjelenítés szűrők konstruálása). A DNS működésének alapja (IP cím meghatározása domain név alapján; domain név meghatározása IP cím alapján; DNS működésének részletes vizsgálata; forgalomelemzés a Wireshark/WinPcap protokollanalizátorral). Útvonal-felderítés és nyomkövetés a tracert segítségével (a tracert működése; nyomkövetés a default gateway-ig, egy szerverig és egy külföldi szerverig). TCP adatfolyamok vizsgálata a netstat és a Wireshark programmal (protokollok azonosítása; TCP folyamok számának meghatározása; kapcsolatlebontás; TCP folyam helyreállítása, Follow TCP Stream; operációs rendszer és szerverszoftver azonosítása; protokollok sávszélesség-igénye).

2. TCP/IP protokollcsalád vizsgálata (1 x 4 óra)
3. Valós idejű információátvitel, szolgáltatásmínőség (1 x 4 óra)

4. Windows operációs rendszer vizsgálata (1 x 4 óra)

5. Linux operációs rendszer vizsgálata (1 x 4 óra)
A laborfeladat egy Linux disztribúció telepítése és konfigurálása. A cél a telepítési folyamat és az utána következő konfigurációs lépés megismerése, majd felhasználói és üzemeltetési alapjainak megszerzése. Részfeladatok: telepítési beállítások, telepítés elindítása, közben az ellenőrző kérdéseket megválaszolása a további feladatokról; alapjainak: grafikus és karakteres shell-ek, legfontosabb parancsok; beállítások: biztonság (tűzfal, selinux), szolgáltatások, felhasználók; rendszermonitorozás és naplózás.

A programozás alapjai 1.
(VIEEA100, 1. szemeszter, 2/2/0/v/5 kredit, EET)

1. A tantárgy célkitűzése
A tantárgy célkitűzése, hogy a hallgatók megfelelő jártasságot szerezzenek a számítógépes problémamegoldás módszereinek és alapvető eszközeinek használatában annak érdekében, hogy a megszerzett ismeretek és készségeket további tanulmányait során hatékonyan legyenek képesek alkalmazni. A tantárgy további célkitűzése a hordozható programok készítésének bemutatása. A célkitűzés teljesítését egy magas szintű programozási nyelv, a C megismerése teszi lehetővé. A gyakorlatok anyaga folyamatosan követi az előadások tematikáját, azok megértését, az algoritmusok részletes megismerését támogatja.

2. A tantárgy tematikája
1. hét.

2. hét.

3. hét.
4. hét.

5. hét.

6. hét.

7. hét.

8. hét.
Gyakorlat: Állapotgépek tervezése példákon keresztül; részletek implementálása. Ly számláló, mondat nagybetűsítő, kommentszűrő.

9. hét.

10. hét.

11. hét.
Gyakorlat: Adatszerkezetek választása. Listák használata; elemek átláncolása.

12. hét.

13. hét.

14. hét.
Tartalék előadás.
Gyakorlat: vizsgára gyakorlás.
A programozás alapjai 2.
(VIIIA114, 2. szemeszter, 2/2/0/f/4 kredit, IIT)

1. A tantárgy célkitűzése
A tantárgy alapvető célja, hogy alapozó tantárgyként folytassa a számítógépes problémamegoldás módszereinek és alapvető eszközeinek előző félévben megkezdetett megismeretését olyan szinten, hogy azt a hallgatók további tanulmányaik során képesek legyenek hatékonyan alkalmazni. Ezen félév alapvető célkitűzése, hogy további gyakorlatokkal mélyítse a C programozási nyelv ismeretét, megismertesse a nagyméretű programozási feladatok megoldásának lépéseit, és bevezessen az objektum-orientált programozásba.

Célkitűzését a tantárgy az előző félévben megszerzett C nyelvi tudásra alapozva, a C++ nyelv megismertetésével éri el. A gyakorlatok anyaga folyamatosan követi az előadások tematikáját, azok mélyebb megértését teszi lehetővé.

A tárghoz szorosan kapcsolódik a Szoftver labor 2 c. tantárgya (VIIIA115), mely laborgyakorlatokkal segíti a megszerzett ismeretek elmélyítését.

2. A tantárgy tematikája
C++ nyelv származtatása a C-ből
- Makró (inline), konstans megvalósítás, típusértékű struct, enum; prototípusok, default argumentumok és függvény overload.
- Memória allokáció, new, delete, new_handler; referencia típus, függvény paraméterek és visszatérési érték, cin, cout, cerr objektumok; adatok láthatóság és érvényessége.
- Objektum-orientált programozás alapjai C++ környezetben.
- Objektum-orientált programozás alapfogalmai, elvei, objektum fogalma. Osztály, fogalma, egységbezáras, védelem és információtakarás.
- Tagfüggvények típusai, védelem enyhítése, friend mechanizmus. Konstruktor, destruktor, adatok (objektumok) inicializálása, this pointer használata.

Áron
- Operátorok értelmezésének kiterjesztése: operátor overload fogalma. Dinamikusan allokált mezővel rendelkező objektumok értékadása és inicializálása, másoló konstruktor.
- Operátorok értelmezésének kiterjesztése tagfüggvényvel és friend mechanizmussal. Referencia típussal visszatérő függvény mint balérték (index operátor).

Generikus adatszerkezetek jelentősége. Dinamikus adatstruktúrák, generikus osztályok.

Problémamegoldás objektum-orientált és nem objektum-orientált szemlélettel:
- Adat, algoritmus, program.
- Szoftverkészítés, programfejlesztés.
- Strukturált tervezés, modularitás, dekompozíció.
- Funkcionális dekompozíció, absztrakt adat, adat-orientált dekompozíció.
- Operációs rendszerek és fejlesztést támogató eszközök használatának alapvető ismerete

Szoftvertechnológia
(VIIIA217, 3. szemeszter, 3/1/0/v/4 kredit, IIT)

1. A tantárgy célkitűzése
A tantárgy nagy méretű szoftver rendszerek tervezésének, fejlesztésének, karbantartásának tanítását tüzi ki célul, bemutatva a szoftver, mint termék előállításához szükséges mérnöki tevékenység technikáit és módszereit. A tantárgy a technikai aspektusok kiemelése mellett foglalkozik a technológiák adminisztratív vonatkozásaival is (management).
A tantárgyat abszolválva a hallgatók képesek - megérteni és kezdelni a nagy méretű szoftver rendszerek fejlesztésének problémáit; - részt venni nagy projektekben. A tantárgy kidolgozásánál - a korábbi évek tapasztalataiból kiindulva - két-lépcsős Software Engineering oktatási modellt vettünk alapul, ahol a hallgatók egy félév alatt előadásokon keresztül megismerik a technikákat és metodológiákat, majd a következő félévben a szoftver laboratóriumi keretében alkalmazzák a tanultakat.

2. A tantárgy tematikája

Szoftvertechnikák

(VIAUA218, 4. szemeszter, 3/1/0/v/4 kredit, AAIT)

1. A tantárgy céltúzetése

A tantárgy keretében a hallgatók megismerik az objektum-orientált szoftverkészítés technikáit, valamint az eseményvezérrelt programozás legfontosabb módszereit. A hallgatók elsajátítják a grafikus felhasználói felület (GUI - Graphical User Interface), gyors alkalmazás-fejlesztés (RAD - Rapid Application Development) struktúráit és programozási alapjait, megismerik a modern felügyelt futtatókörnyezetek és osztálykönyvtárak fontosabb szolgáltatásait (reflexiós technikák, adatkötés, rajz és szöveg megjelenítése,
stb.), valamint betekintést kapnak a feladatok párhuzamos futtatásának lehetőségeibe és az ennek során használható szinkronizációs technikákba. A tantárgy hangsúlyt fektet a különböző kliensoldali (vastag, webes, mobil) alkalmazások fejlesztésének bemutatására. Ezen túlmenően a tantárgy ismerteti a szoftverrendszek tervezésének kapcsán a gyakrabban használt architekturális és tervezési mintákat.

A tantárgy hallgatása során elsajátított ismereteket és esetleírások reprezentálják.

Összefoglalva a tantárgy megadja az alapot a hallgatók számára, hogy a hallgatók képesek legyenek a mindenkor megjelenő platformokon és technológiákkal korszerű szoftverek készítésére.

2. A tantárgy tematikája

Objektum-orientált technikák: az UML és a kód kapcsolata, interfész alapú programozás., örökítés szabályozása, property-k (tulajdonságok), attribúumok, event-ek és delegate-ok, az eseményvezérlő programozás alapjai.

Webes alkalmazások fejlesztéséhez kapcsolódó tervezési minták (Page Controller, Table Proxy, stb.)

Információs rendszer kialakítása

1. A tantárgy célkitűzése

A tantárgy célja a számítógépek illetve összetett, hálózatba kapcsolt informatikai rendszerek kialakítására és rendszer-adminisztrációra feladatainak megismertetése. A tantárgy rendszer-szemléletű áttekintést ad az információs rendszerek és a széles értelemben vett rendszergazdai feladatokról.

2. A tantárgy tematikája

Hálózat, a hálózat üzemeltetése. Szabványos és személyes üzemeltetés: OSI modell.

Az IT infrastruktúra elemeinek közös információs modellje.

Adatközpont

Alapvető informatikai szolgáltatások. Elektronikus - levelezés (e-mail), nyomtatásiTávolyi hozzáférés szolgáltatás, Internet hozzáférés szolgáltatások.

Az üzemeltetés szervezeti kérdései
Az üzemeltetés szervezeti kérdései
Esettanulmány példák.

Operációs rendszerek
(VIMIA219, 4. szemeszter, 3/1/0/v/4 kredit, MIT)

1. A tantárgy célkitűzése
A tantárgy célja az operációs rendszerek funkcióinak, működési elveinek, fő típusainak, valamint a konkurens és elosztott rendszerek programozási modelljeinek megismeretése, az elvek szemléletetése példákon, az operációs rendszer választás szempontjainak bemutatása. A tantárgy és a hozzá tartozó laboratóriumi gyakorlat során komoly hangsúlyt kap a számítógépek hardver és rendszer szoftver összefüggése illetve egymásra hatása, így a kurzus elvégzése elegendő kitűnik az operációs rendszer használatának mérnöki, készségszintű elsajátításához is.

2. A tantárgy tematikája

Adatbázisok
(VITMA311, 5. szemeszter, 3/1/0/v/5 kredit, TMIT)

1. A tantárgy célkitűzése
Adatbáziskezelő-rendszer használatával, működtetésével és készítésével kapcsolatos alapvető ismereteket, módszereket elsajátítása. A tanult ismeretei alkalmazása gyakorlati problémákra.

2. A tantárgy tematikája
Adat és információ. Strukturált, szemistrukturált és nem struktúrált adatok. Az adatbázis fogalma, fontosabb összetevői, felhasználási módjai (meghatározás, rendszerkomponensek, rétegmodellek, nyelvi felületek, adatfüggeltség, felhasználói szintek).

Relációs lekérdezések kiértékelése.

Többfelhasználós működés elemei (ACID, zák, éhezés, patt, sorosíthatóság, tranzakció modellek, 2PL, fa protokoll, figyelmeztető protokoll, időbélyegek, verziók, tranzakcióhibák kezelése, piszkos adat, lavina, rendszerhibák kezelése, naplózási technikák, visszaállítás, ellenőrzési pontok).

Adatbázis-tranzakciók elosztott környezetben (elosztott zárkezelés, globális sorosíthatóság, 2PC, 3PC).

Mesterséges intelligencia
(VIMIA313, 5. szemeszter, 3/1/0/v/5 kredit, MIT)

1. A tantárgy célkitűzése
A tantárgy célkitűzése a mesterséges intelligencia területének rövid, ám igényes bemutatása. A felvezetés lépései
(1) az intelligens viselkedés számítási modellekkel való kifejezés problémaköre,
(2) a mesterséges intelligencia formálés és heurisztikus módszereinek elemzése és alkalmazása,
(3) a gyakorlati megvalósítások módszerei és problémái. A tantárgy az informatikus hallgatók azokat a képességeit fejleszti, melyek révén képesek lesznek:
- tanulmányozni számítógép újkerült használatát,
- fejleszteni hatékony módszereket számítási problémák megoldására,
- megérteni számítástechnika-/tudomány technológiai / konceptiális korlátjait
- intellektuálisan megérteni az algoritmus központi szerepét az informatikai rendszerekben.

2. A tantárgy tematikája
Számítógépes grafika és képfeldolgozás
(VIIIA316, 5. szemeszter, 3/1/0/v/4 kredit, IIT)

1. A tantárgy célkitűzése
A tantárgy a számítógépes grafika és a képfeldolgozás alapjait mutatja be, megismertet a képi információ előállításának, megjelenítésének, mérésének és feldolgozásának a módszereivel.

2. A tantárgy tematikája

5. Virtuális világmódellek: Hierarchikus modell. Szintérgráfok. VRML.

Szoftver laboratórium 1.
(VIEEA101, 1. szemeszter, 0/0/2/f/2 kredit, EET)

1. A tantárgy célkitűzése
A tantárgy célkitűzése, hogy a hallgatók megfelelő gyakorlati játasságot szerezzenek az előadáson és gyakorlaton megismert módszerek kipróbálása által, annak érdekében, hogy a megszerzett ismereteket és készségeket további tanulmányaik során hatékonyan legyenek képesek alkalmazni. Az anyag jobb elsajátítása érdekében a hallgatóknak egy nagyobb házi feladatot is meg kell oldaniuk.

2. A tantárgy tematikája
A tantárgy tematikája elsősorban az IBM PC-k használatának szabályai, az egyetemi hálózattal és az egyetemi hálózat használatával kapcsolatos alapismereteket ismeretések. Integrált fejlesztői környezet használata. Az operációs rendszerekkel kapcsolatos alapismeretek áttekintése.

Szoftver laboratórium 2.
(VIIIA115, 2. szemeszter, 0/0/2/f/2 kredit, IIT)

1. A tantárgy célkitűzése
A tantárgy célkitűzése, hogy a hallgatók megfelelő gyakorlati játasságot szerezzenek a Programozás alapja 2 c. tantárgy előadásain és tantermi gyakorlatain megismert módszerek kipróbálása és begyakorlása által, annak érdekében, hogy a megszerzett ismereteket további tanulmányaik során hatékonyan, készség szinten képesek legyenek alkalmazni az objektum-orientált programok C++ nyelven történő megvalósítása során. A laborgyakorlatok kiemelt célja, hogy a megismert fejlesztőeszközök és fejlesztőkörnyezet használatát begyakoroltsa.

Az anyag jobb elsajátítása érdekében a hallgatóknak több kisebb és egy nagyobb házi feladatot is meg kell oldaniuk.

2. A tantárgy tematikája
Előkészületek az objektumok és osztályok megértéséhez: (pl. dinamikus adatot tartalmazó struktúra és hozzá tartozó globális függvények elkészítése).
Előkészített struktúrából osztály létrehozása. Egységbezárással hatásának bemutatása.
Tárolók létrehozása, gyakorlás.
Öröklés különböző módjainak és hatásainak megértése.
Virtuális tagfüggvények.
Mutató konverzió. Heterogén kollekció.
Többszörös öröklés gyakorlása. Egyszerű példák a perzisztencia megvalósítására.
Generikus szerkezetek, generikus algoritmusok.
Iterátorok használata és szerepe. Alapvető STL fogalmak, STL tárolók gyakorlása.
Házi feladatok ellenőrzése, beszedése.

Szoftver laboratórium 3.
(VIIIA212, 3. szemeszter, 0/0/2/f/2 kredit, IIT)

1. A tantárgy célkitűzése
Bevezetés a tisztán objektum-orientált programozásba. A Java nyelv készségszintű elsajátítása.

2. A tantárgy tematikája
I. A Java programozási nyelv tulajdonságai
- tisztán objektum-orientált szemlélet
- biztonság, kód ellenőrzése fordításkor és futtatáskor
- hordozhatóság, platformfüggetlenség
- interpreteres futtatás
- osztályok dinamikus betöltése, többszálúság

II. Java programozás a C++ programozó szemével
- egyszerű adattípusok, implicit és explicit típuskonverzió
- osztályok, dinamikus allokáció, hivatkozás referencia szerint
- csomagoló osztályok, konverziós függvények, típusra jellemző konstansok
- generikus tároló, tömbök mint objektumok, sztringek
- vezérlő szerkezetek
- adattakarás: private, package, protected, public hozzáférés
- virtuális alaposztályok, virtuális metódusok,
- osztályváltozók, osztálymetódusok
- személygyűjtés
- öröklődés, interfészek

III. Kivételkezelés
- Exception osztály kiterjesztése
- kivételek dobása / elkapása - try / catch szerkezet
- program által generált kivételek és rendszerkivételek
- kivételt generáló metódusok
- szabványos adatbevitel kivételkezeléssel

IV. Dinamikus adatszerkezetek
- többdimenziós tömbök
- dinamikusan nyújtható tömb
- generikus programozás
- láncolt lista
- bináris fa
- kollekciók, iterátorok
V. OOP tervezési minták a Java osztálykönyvtárban
- kódmegosztás sablonmetódussal
- példányosítás absztrakt gyártó metódussal
- adatszerkezetek bejárása iterátorral
- funkcionális kiterjesztés toldalékkal
- homogén összetétel
- stratégia
- adapter

VI. Grafikus felhasználói felületek programozása
- grafikus programok felépítése, interakciós sémák
- eseményvezérelt program tervezése állapotgéppel
- Model-View-Controller paradigma
- AWT komponensek és tárolók
- ablakkomponensek elrendezése
- eseménykezelés interfésszel és adapterrel
- grafika, rajzolási állapot
- animáció párhuzamos fonállal

VII. Appletnek
- applet felépítése, init, start, stop, destroy metódusok
- applet életciklusa
- applet beágyazása HTML oldalba
- példaprogram: rugós inga applet

VIII. Játékprogramozás
- objektumok ütemezése, animáció, kölcsönhatások kezelése
- felhasználói beavatkozások kezelése, polling
- mozgás fizikai szimulációja
- sprite-ok, animáció képsorozattal
- dupla pufferelés

Szoftver laboratórium 4.
(VIIIA220, 4. szemeszter, 0/0/2/2 kredit, IIT)

1. A tantárgy célkitűzése
Ez a labor a 3. féléves Szoftvertechnológia és Szoftver labor III. tantárgyakhoz kapcsolódó project labor szerepét tölti be. A hallgatók 3-4 fős csoportokban projektet valósítanak meg. A teamek saját belső felépítésüket és vezetőjüket maguk választják meg. Minden team kommentározott naplót vezet, amiben dokumentálja, hogy ki, mikor, milyen tevékenységet, kikkel együttműködve, mennyi ideig végzett. A napló értékelés tárgya.
A feladat megoldása UML alkalmazásával a Rational Unified Process (RUP) módszertan szerint történik. A projekt során a csoportok alábbi szoftver termékeket készítik el:
- Követelményspecifikáció, projekt terv, use case, use-case diagram, szójegyzék
- UML analízis és tervdokumentáció
- Teszt terv
- Felhasználói kézikönyv és help
- Dokumentált, belőtt, tesztelt programok

2. A tantárgy tematikája
1. Team-ek szervezése, a feladat kiadása.
2. A követelmények specifikálása, projekt terv, use case-ek, use case diagramok, szójegyzék készítése.
5. Szkeleton modell bemutatása.
6. RUP analízis, valóságos use case-ek. Felhasználói kézikönyv készítése.

Szoftver laboratórium 5.
(VITMA308 6. szemeszter, 0/0/2/f/2 kredit, TMIT)

1. A tantárgy célkitűzése
Gyakorlati és technológiai ismeretek nyújtása az adatbázis-kezelés egyes témaköreiből.

2. A tantárgy tematikája
1. gyakorlat: Az Oracle rendszer
2. gyakorlat: SQL nyelv
3. gyakorlat: Kliens-szerver architektúrájú alkalmazásfejlesztés
4. gyakorlat: Dinamikus weboldalak előállítása PHP-vel
5. gyakorlat: XML alapú alkalmazásfejlesztés
6. gyakorlat: Oracle Portal
II.4 Differenceált szakmai ismeretek - Elágazó tantárgyak

Beszédinformációs rendszerek
(VITMA404, 7. szemeszter, 3/1/0/f/5 kredit, TMIT)

1. A tantárgy célkitűzése
Az emberi információ-kezelés és kommunikáció alapja a természetes beszédlánc (beszélő ember - levegő - hallgató ember) működése. A beszédinformációs rendszerek a természetes beszédlánc egy vagy több elemének mesterséges informatikai megvalósítását (pl. beszédfelismerés, beszédszintézis, stb.) integrálják az információ gyűjtésével, tárolásával, feldolgozásával és/vagy az ahhoz való hozzáféréssel kapcsolatos folyamatokba. Napjainkban számos gyakorlati alkalmazásban megjelentek a nagymértű, egyre jobban integrált és automatizált beszédinformációs rendszerek (pl. hívásközpontok, távfelvilágosítás, telebanking, ambient intelligence). A tantárgy célja a beszédlánc elemei mesterséges megvalósításának megismeretése és a beszéddel vezérelt és/vagy beszéddel válaszoló információs rendszerek azon eljárásainak tagolása, amelyek beszédspecifikusak. A tantárgy gyakorlati példák felhasználásával mutatja be a beszédinformációs rendszerek kialakításához szükséges elméleti és gyakorlati ismereteket, az automatizáláshoz alkalmazható beszéde technológiai eszközrendszerek főbb elemeit, azok alapvető működési elveit, specifikációját jellemzőit.

2. A tantárgy tematikája
Bevezetés

Beszédkódolás és tömörités

Beszédválaszú rendszerek

A beszéd- és szövegadatbázisok jelentősége a felismerésben. Adatbázisok leírása, tervezése, feldolgozási módszerek. Az akusztikus környezet szerepe.

Beszélőfelismeréssel és beszélőazonosítással növelt biztonsági hozzáférési rendszerek

Beszédfunkciók alkalmazása információs rendszerekben

Beszédfonkciók alkalmazása információs rendszerekben

Beszédfonkciók alkalmazása információs rendszerekben

Rendszermodellezés

(VIMIA405, 7. szemeszter, 3/1/0/0/5 kredit, MIT)

1. A tantárgy célkitűzése

A tantárgy az informatikai rendszerek tervezési folyamatának legmagasabb szintjét, az együttes hardverszoftver architektúra tervezést és méretezést tárgyalja modellalapú megközelítésben.

Megismerik a helyességbizonyítás, teljesítményanalízis és szolgáltatásbiztonság alapfogalmait és megjelenésüket a modellezésben. A korábbi hardver és szoftverteljesítmények ismeretekre alapozva és azokat kiegészítve a modellezéshez kapcsolódó gyakorlati méretezési és méréstechnikai feladatokban jártasságot szereznek.

A tantárgy azokra az általános modellkre fókuszál, amelyek több alkalmazási területen (általános adatfeldolgozó, interaktív üzleti, Web alapú, beágyazott rendszerek) is hasznosak, de a könnyebb érthetőség kedvéért példaanyagát súlypontilag az interaktív Web alapú alkalmazások területéről veszí.

A tantárgy követelményeit eredményesen teljesítő hallgatók:

megismerik a modellalapú architektúra tervezés alapjait, képesek az informatikai rendszerekkel szembeni követelmények és specifikációjuk szabatos megfogalmazására, működési környezetük és architektúrájuk modellezésére, ismerik a vonatkozó főbb szabványokat, jártasságot szereznek a diszkrét rendszerek szimuláció alapú helyességbizonyításában és méretezési eljárásaiban, képesek a már működő rendszerek szük keresztmetszeteinek feltárására, az azok megszüntetésére szolgáló megoldási alternatívák összehasonlító elemzésére. megismerik a számítógéprendszerek gyakorlati méréstechnikájának azon elemeit, melyekkel a modellek paraméterezésének alapjául szolgálhatnak.
2. A tantárgy tematikája

1. Modellezési alapok (6 óra elmélet/előadás + 2 óra eszközbbemutató)

Célkitűzés: az alapvető fogalomkészlet és technológiai kontextus megadása

2. Minőségi analízis (9 óra elmélet/előadás + 3 óra eszközbbemutató)

Célkitűzés: a rendszer modellalapú logikai helyességének és specifikációja teljességének vizsgálata, a szolgáltatásbiztonság alapfogalmainak bevezetése, a modellező eszköz bemutatása.

Környezet modellezése. Felhasználói viselkedés graf (CBMG) és származtatása az UML alapú korai tervekből.

3. Mennyiségi analízis: teljesítménybecslés (19 óra elmélet/előadás + 5 óra eszközbbemutató, számítógépes gyakorlat)

Célkitűzés: azon informatikai módszerek bemutatása, amelyekkel az informatikai rendszer egyes komponenseinek teljesítményjellemzői megszerezhetőek és a rendszer modelljébe beépülve szimuláció segítségével annak teljesítményét illetve szükső keresztmetszeteit meghatározhatóvá teszik.

4. Mennyiségi analízis: szolgáltatásbiztonság (3 óra elmélet/előadás + 1 óra eszközbbemutató)

Célkitűzés: annak bemutatása, hogy a teljesítménymodellezés eszköztára adaptálható szolgáltatásbiztonsági célokra is.

Számítandó jellemzők és meghatározásuk módja: rendelkezésre állás, teljesítőképesség, megbízhatóság.
5. Összefoglaló esettanulmány (2 óra elmélet/előadás + 2 óra számítógépes méretezési gyakorlat)

Célkitűzés: a teljes elemzési folyamat bemutatása szintézis jelleggel.
Elektronikus üzleti infrastruktúra vizsgálata és méretezése. Költségbecslés. Megoldási alternatívák összehasonlítása

Deklaratív programozás

(VISZA403, 7. szemeszter, 3/1/0/f/5 kredit, SZIT)

1. **A tantárgy célkitűzése**
A deklaratív - más néven nonimperatív - programozási paradigma megismertetése, többek között a párhuzamos és elosztott programozás (pl. a többmagos processzorok programozása), a korlátalapú programozás, a mesterségesintelligencia-módszerek, az ontológiakezelés és a szemantikusweb-kezelés korszerű megalapozására.

2. **A tantárgy tematikája**
Az imperatív és a deklaratív (funkcionális és logikai) programozás összevetése.
Funkcionális programozás Erlang nyelven.
Logikai programozás Prolog nyelven.
II.5 A mérnöki informatikai alapszak szakirányai és tantárgyai

1. **Autonóm intelligens rendszerek**: Kiszolgálója: IIT, MIT.

 Tantárgyak:
 - Ipari képfeldolgozás és képmegjelenítés (IIT)
 - Kooperatív és tanuló rendszerek (MIT)
 - Autonóm robotok és járművek (elágazó) (IIT)
 - Beágyazott információs rendszerek (elágazó) (MIT)

 Ágazatok:
 - **Autonóm rendszerek (IIT)**
 Korábban: Autonóm rendszerek információtechnológiája szakirány
 - **Intelligens rendszerek (MIT)**
 Korábban: Integrált intelligens rendszerek szakirány

 Koordinátor: IIT

2. **Infokommunikációs hálózatok szakirány**: Kiszolgálója: HIT, TMIT.

 Tantárgyak:
 - Mobil infokommunikációs rendszerek (HIT)
 - Protokoll technológiá (TMIT)
 - Infokommunikációs hálózatok tervezése és üzemeltetése (elágazó) (HIT)
 - IP alapú hálózatok menedzsmentje (elágazó) (TMIT)

 Ágazatok:
 - **Mobil infokommunikáció (HIT)**
 Korábban: Újgenerációs hálózatok szakirány
 - **Infokommunikációs hálózatok és szolgáltatások (TMIT)**
 Korábban: Internet és infokommunikációs alkalmazásai szakirány

 Koordinátor: HIT

3. **Informatikai technológiák szakirány**: Kiszolgálója: AAIT, IIT, MIT.

 Tantárgyak:
 - Adatvezérlt alkalmazások fejlesztése (AAIT)
 - Intelligens rendszerekfelügyelet (MIT)
 - Objektumorientált szoftverfejlesztés (IIT)

 Ágazatok:
 - **Szoftverfejlesztés (AAIT)**
 Korábban: Informatikai technikák és eszközök szakirány
 - **Rendszerfejlesztés (IIT)**
 Korábban: Rendszerfejlesztési szakirány
 - **Rendszertervezés (MIT)**
 Korábban: Informatikai infrastruktúra tervezése szakirány

 Koordinátor: AAIT

4. **Médiainformatika és –biztonság szakirány**: Kiszolgálója: HIT, TMIT.

 Tantárgyak:
 - Médiatechnológiák (HIT)
 - Tartalomkezelési technológiák (TMIT)
 - Médiabiztonság (TMIT - elágazó)
 - Adatbiztonság és tartalom alapú információkezelés (HIT – elágazó)

 Ágazatok:
 - **Médiainformatika (TMIT)**
 Korábban: Médiainformatika szakirány
 - **Médiatechnológiák (HIT)**
 Korábban: Infokommunikációs rendszerek biztonsága szakirány

 Koordinátor: TMIT

5. **Vállalati információs rendszerek szakirány**: Kiszolgálója: ETT, SZIT, TMIT

 Tantárgyak:
 - Vállalatirányítási rendszerek (ETT)
 - Termelésinformatika (ETT)
 - Gazdálkodási információmenedzsment (TMIT)

 Ágazatok:
 - Nincsenek.

 A szakirány a korábbi Integrált vállalat-irányítási rendszerek szakirány jogutódja.

 Koordinátor: ETT
II.6 A mérnök informatikus alapszak szakiránytárgyainak leírása

II.6.1 Autonóm intelligens rendszerek szakirány (IIT, MIT)

(Autonomous Intelligent Systems)
A szakirány koordinátora: IIT
Ágazatok:
Autonóm rendszerek (IIT)
Intelligens rendszerek (MIT)

1. A szakterület főbb jellegzetességei, trendjei:
Az autonóm intelligens rendszerek olyan számítógépes rendszerek, melyek emberi közreműködés és állandó emberei felügyelet nélkül is képesek komplex feladatok megoldására: képesek a környezetükből származó információ érzékelésére és feldolgozására, képesek önálló döntések meghozatalára és alkalmazások megoldásai folyamatokba történő beavatkozására, a folyamatok felügyeletére, illetve irányítására. Az autonóm rendszerek a műszaki fejlődés fontos állomását képezik, jelentőségük folyamatosan nő. Az autonóm intelligens rendszerek létrehozása az információ technológia széles spektrumának integrálását igényli. A szakirány célja rövid és hosszú távon egyaránt hasznosítható ismeretek nyújtása, olyan műszaki informatikus szakemberek képzése, akik tisztában vannak az autonóm intelligens rendszerekre jellemző főbb képességeket biztosító megoldások elvi és gyakorlati problémáival. Így foglalkozik az olyan alapvető információ-feldolgozó eljárásokkal, mint a képfeldolgozás és képmegjelenítés, foglalkozik az elosztott, intelligens és interaktív rendszerek közötti kooperációval és e rendszerek képességeinek javításával a környezetből származó információ autonóm felhasználását biztosító gépi tanulással. A szakiránya célja az olyan technológiai területek legértékesebb képességeinek fejlesztése és alkalmazása.

2. A megszerezhető kompetenciák:
A szakirány elvégzése után a hallgatók képessé válhatnak:
- autonóm rendszerek irányítási és jelfeldolgozási feladatainak megoldására,
- az elosztott intelligens rendszerek fejlesztésére és üzemeltetésére,
- autonóm robotrendszerek és járművek alrendszereinek programozására irányítására és vezérlésére,
- ipari képfeldolgozó és megjelenítő módszerek fejlesztésére és alkalmazására,
- a szenzorhálózatok magasabb rendszerszintekhez való informatikai illesztésére,
- kommunikáció révén kooperatív ágensek tervezésére,
- mesterséges intelligencia komponensek (pl. tanuló képesség) tervezése és beágyazása integrált informatikai rendszerbe,
- heterogén információforrásokból információt kinyerő (adatbányászó) alkalmazások tervezésére,
- elosztott komponensek egy rendszerbe történő integrálására.

3. A megszerezhető ismeretek főbb témakörei:
- autonóm rendszerek irányítási és jelfeldolgozási feladatainak megoldására,
- szemantikus web-re kötött szenzorhálózatok, szemantikus web-ről információt begyűjtő, feldolgozó rendszerek
- kommunikáló, kooperáló ágensek rendszerek,
- ipari képfeldolgozó és képmegjelenítési módszerek,
- intelligencianövelő és tudásnövelő rendszerek komponensek,
- a gépi tanulás alapeljárásai,
- mobil robotok és járművek pályatervezése, navigációs rendszerének felépítése,
VIII.6.1.1 A szakirány tantárgyai

II.6.1.1.1 Ipari képfeldolgozás és képmegjelenítés BMEVIIA356

(6. szemeszter, 3/1/0/v/4 kredit, IIT)

A tantárgy célkitűzése: A számítástechnika fejlődésével a képi információk automatikus kiértékelése napi gyakorlattá vált a minőségellenőrzés, folyamatirányítás, navigáció, biztonságtéchnika, orvosi diagnosztika területén és számos egyéb helyen. Az egyre jobb minőségű megjelenítő technikák alkalmazásával a grafikus szimuláció és a teleoperáció hétköznapeni technológiákká vált. A tantárgy célja a korszerű számítógépes képfeldolgozási és megjelenítési eljárások eljárások elveinek és alkalmazásának készségszintű megismeretése, a távfelügyelt autonóm ipari folyamatok kezelésében kulcsszerepet játszó virtuális technikák bemutatása.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy ismerjék a képfeldolgozásban és képmegjelenítésben dolgozó problémák alapjait. Elvárható az is, hogy képessé váljanak a képfeldolgozás és megjelenítő rendszerek konfigurálására és üzemeltetésére, továbbá ilyen rendszerek specifikálására és tervezésükben, valamint kifejlesztésükben történő aktív részvételre.

távolságadatok közötti összefüggés. A reflexiós modellek szerepe a képértelmezésben. Koordináta
transzformációk, kamera modellek és kalibrációs eljárások. Alapvető érzékelő eszközök.
Geometriai tulajdonságok mérése. A valós idejű realizáció kérdései. A képek előkészítő feldolgozása.
Hisztogram transzformációk. Szűrők a tér- és a frekvenciaturmányban. Képszoportja matematikai
modellje. Szintek hasonlóságán alapuló szegmentálás. Gyors változásokon alapuló szegmentáltal
Vizuális visszacsatolás. Tulajdonság reprezentáció. Objektumfelismerési (osztályozási) módszerek. Aktív
Korszerű képmegjelenítési eszközök (pl. HMD, polárs zűrős, anaglif, shutter, holoTV) és alkalmazott
renderelési módszerek. 3D megjelenítés, térhatás felfedezése és alkalmazása.
Képfeldolgozás absztrakció. Objektumfelismerési (osztályozási) módszerek. Aktív
II.6.1.1.2 Kooperatív és tanuló rendszerek

BMEVIMIA357
(6. szemeszter, 3/1/0/v/4 kredit, MIT)

A tantárgy célkitűzése: A tantárgy célja megismertetni a hallgatókat a gépi rendszerek együttműködés-
nek problémákájával, az intelligens kapcsolattartást és együttműködést gyakorló módszereivel és esz-
közeivel és ezt követően a gépi tanulás olyan problémáival, speciális vonásaival és rejtett lehetőségeivel,
amelyek csak több intelligens rendszer környezetében alakulhatnak ki.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesíti hallgatóktól
elvárható, hogy ismerjék azokat a lehetőségeket és megoldásokat, melyek az egymásra utaló, közös
környezetbe beágyazott intelligens agensek kooperatív működéséből adódnak, ismerjék az intelligens
kapcsolattartást és együttműködés gyakorlati módszereit és eszközeit, valamint azokat az alapvető gépi
tanulás eljárásokat, melyek révén az agensek a nem tökéletes tudásukat javítani képesek.

Rövid tematika: Több agensből álló elosztott rendszerek. A nyílt rendszer fogalma és jelentősége,
informatikai szabványosítás. Az agens rendszer fogalma, az agens alapú rendszerek tulajdonságai. Multi-
agens rendszerek. A kommunikáció és a kooperáció alapfogalmak. Ágens szervezetek, FIPA
kezdeményezés és a Jade agencsközpont fogalma felépítése. Az együttműködés informatikai alapja.
Az agens kommunikáció természetes nyelvű elemei és az erre alapozó protokollok, ”Hagymányos” képek átszámítása sztereo
képleje tartás céljából. Bemerüléses virtuális valóság a teleoperációban. Szimulátor rendszerek. Hardver in the Loop
rendszerekben. Az alapvető együttműködés gyakorlati módszereit és eszközeit, valamint azokat az alapvető gépi
tanulás eljárásokat, melyek révén az agensek a nem tökéletes tudásukat javítani képesek.

Értékkülönbségek (TD) tanulás. A cselekvés–értékkülönbségek tanulása. Tanulási dinamikus rendszerekben. A mozgócél
Tanulás dinamikus rendszereken. A mozgócél tanulás problémája. A tanultak
alkalmazása egyszerűbb gyakorlati feladatokra. Kísérletezés Jade platformon az előre elkészített

V 1.6 2013. június 24. 47

II.6.1.2 Autonóm rendszerek ágazat (IIT)

II.6.1.2.1 Autonóm robotok és járművek **BMEVIII.A358**

(6. szemeszter, 3/1/0/v/4 kredit, IIT)

A tantárgy célkitűzése: A tantárgy célja, hogy összefoglalja az autónom rendszerek irányításának, navigációjának, koordinációjának és intelligens rendszertechnikai megvalósításának elméleti és gyakorlati alapjait. A tantárgy szemléletbeli és rendszertechnikai alapokat nyújt ilyen rendszerek üzemeltetői és fejlesztői számára. Bemutatja a robotizált gyártórendszerek felépítését, a legelterjedtebb robot struktúráit, a robotok programozásának tipikus lépései, a navigáció és modellalkotás elméleti alapjait és eszközeit, a pályatervezés módszereit. Megismertet az ipari és mobilis robotokban elterjedt pályatervezési és irányítási módszerekkel illetve az irányítások valós idejű aspektusaival. Bemutatja a mobilis és lábon járó robotok kooperációjának elveit és alkalmazási lehetőségeit, valamint az autónom földi, légi és úti járművek főbb irányítási problémáit.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy ismerjék a robot és járműrendszer rendszermegoldásai kérdéseit és megoldásait, ismerjék a robotikában és járműiparban fellépő problémák megoldására kidolgozott módszereit. Elvárható az is, hogy képessé váljanak robotizált gyártórendszerek és komplex robotizált és járműirányítás (pl. kormány, fél, felfüggesztés) rendszerek konfigurálására, több autónóm rendszer esetén ezek koordinálására, továbbá ilyen rendszerek specifikálására és tervezésükben, valamint kifejlesztésükben történő aktiv részvételre.

II.6.1.2.2 Autonóm robotok és járművek laboratórium 1. **BMEVIIIA361**

(6. szemeszter, 0/0/2/f/2 kredit, IIT)

A tantárgy célkitűzése: A tantárgy célja, hogy segítsen a gyakorlati ismeretek elsajátításában az autonóm robotokhoz, járművekhez kapcsolódó irányítási, képfeldolgozási diszciplínák és a számítógépes grafika területén. A gyakorlati ismeretek olyan laboratóriumi mérések során kerülnek átadásra, mint az ipari és mobilis robotok programozása, gyors prototípustervezés, beágyazott irányítás, identifikáció, 2D képfeldolgozás, virtuális műszerezés, mikrorobot irányítása, robotrendszerek dinamikus számítógépes grafikai megjelenítése.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesítő hallgatók gyakorlati képességeket szereznek az autonóm rendszerek fejlesztésénél, programozás és navigációs feladatok megoldásában, valamint a korszerű gyors prototípustervező rendszer használatában.

Rövid tematika: Identifikáció, gyors prototípustervezés és beágyazott irányítás, mikrorobot teleoperációs irányítása, autonóm dinamikus rendszerek számítógépes grafikával támogatott megjelenítése, 2D képfeldolgozás, robotprogramozás, mobilis robot pályatervezése és irányítása, LabVIEW alapú virtuális műszerezés.

II.6.1.2.3 Autonóm robotok és járművek laboratórium 2. **BMEVIIIA424**

(7. szemeszter, 0/0/2/f/2 kredit, IIT)

A tantárgy célkitűzése: A tantárgy célja gyakorlati ismeretek átadása, amelyek a különböző érzékelési technológiák, az ipari képfeldolgozás és képmegjelenítés, valamint a szoft számítási módszerek területén hatékonyan támogatja az autonóm rendszerek tervezését, működtetését. A gyakorlati ismeretek elsajátítása olyan laboratóriumi mérések keretében történik, mint LabView környezetben megvalósított érzékelés, szenzorcsatolt irányítás, távolságképfeldolgozás, Motion Capture, 3D vizualizációs eljárások és szoft computing módszerrel történő szabályozótervezés.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesítő hallgatók gyakorlati képességeket szereznek az autonóm rendszerek fejlesztésénél és üzemeltetésekor fellépő irányítási, képfeldolgozási, optimalizálási feladatok megoldásában és a korszerű gyors prototípus-tervező rendszerek használatában.

Rövid tematika: Mérésadatgyűjtés és képfeldolgozás LabVIEW környezetben, szenzorcsatolt robot vizuális érzékelése, genetikus algoritmustal történő szabályozótervezés, szenzorcsatolt robot irányítása LabVIEW környezetben, távolságképfeldolgozás, Motion Capture, 3D vizualizációs eljárások

II.6.1.2.4 Önálló laboratórium **BMEVIIIA363**

(6. szemeszter, 0/0/4/f/6 kredit, IIT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolításra.

II.6.1.2.5 Szakdolgozat **BMEVIIIA404**

(7. szemeszter, 0/10/0/f/15 kredit, IIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
II.6.1.3 Intelligens rendszerek ágazat (MIT)

II.6.1.3.1 Beágyazott információs rendszerek BMEVIMIA359
(6. szemeszter, 3/1/0/v/4 kredit, MIT)

A tantárgy célkitűzése: A tantárgy célja a fizikai-biológiai-kémiai-technológiai környezetükkel aktív, valós-idejű információs kapcsolatban álló, ún. beágyazott számítógépes rendszerek informatikai vonatkozásainak bemutatása és a létrehozásukhoz szükséges ismeretek és készségek fejlesztése gyakorlati példákon keresztül. További cél a tartósan autónóm és valós-idejű működés, valamint a szolgáltatás-biztonság követelményeit figyelembe vevő tervezési elvek és módszerek, továbbá a tervezést segítő eszközök bemutatása.

Megszerezhető készségek/képességek: A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy átfogó ismeretekkel rendelkezzenek a beágyazott információs rendszerekkel szemben támasztható és támasztandó követelményekről, ismerjék a valós idejű programvégrehajtás és feladat-szinkronizálás alapvető módszereit, valamint az elkészült rendszerek tesztelésével és diagnosztikájával, ill. verifikációjával és validációjával kapcsolatos módszerek legfontosabb lépéseit. A szenzorhálózatokra épülő alkalmazások példáján keresztül a hallgatók elsajátítják az elosztott rendszerek programozásának és kommunikációjának alapjait, továbbá biztonságos működtetésük legfontosabb szempontjait.

II.6.1.3.2 Intelligens rendszerek 1 laboratórium BMEVIMIA360
(6. szemeszter, 0/0/2/f/2 kredit, MIT)

II.6.1.3.3 Intelligens rendszerek 2 laboratórium **BMEVIMIA430**
(7. szemeszter, 0/0/2/f/2 kredit, MIT)

A tantárgy célkitűzése: A laboratórium célkitűzése, hogy egy fiktív vagy valós nagyvállalat egy vagy több adatbázisán mutassa be a mesterséges intelligencia alapú eszközök alkalmazását az üzleti adatok gyűjtésében, elemzésében, a vállalat számára fontos előrejelzési problémák, döntéstámogatási feladatok megoldásában. A mérésekhez a vállalat valós vagy fiktív folyamataihoz valósághű üzleti folyamatokból származó nagymennyiségű adatot használunk fel. A laboratórium mérései egy-egy vállalati folyamathoz, modellhez tartoznak: adatok szűrése, klaszterezés, releváns információk kiválasztása; adatok közötti rejtett kapcsolatok feltárása, adatbányászat; vállalati folyamatok modellezése (statikus és dinamikus modellek); előrejelzési feladatok megoldása; döntéstámogatás; tudássalapú információintegrálás; tanácsadói (szakértői) modellek fejlesztése. A mérések feladattípusok köré rendeződnek, a mérések során több különböző elvű eszköz együttes vagy összehasonlító jellegű felhasználása történik meg. A laboratórium keretében a hallgatók a statisztikus módszerek, adatbányász eszközök, neurális hálózatok, döntési fák és logika alapú rendszerek fejlesztésében, alkalmazásában szereznek gyakorlatot.

II.6.1.3.4 Önálló laboratórium **BMEVIMIA362**
(6. szemeszter, 0/0/4/f/6 kredit MIT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkához és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolítása.

II.6.1.3.5 Szakdolgozat **BMEVIMIA410**
(7. szemeszter, 0/10/0/f/15 kredit, MIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
II.6.2 Infokommunikációs hálózatok szakirány (HIT, TMIT)

A szakirány koordinátora: HIT

Ágazatok:
Infokommunikációs hálózatok és szolgáltatások (TMIT)
Mobil infokommunikáció (HIT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
Az infokommunikációs hálózatok rugalmas és hatékony információközlést és feldolgozást, sokrétű szolgáltatásokat és alkalmazásokat tesznek lehetővé a számítástechnikában, a távközlésben és az elosztott kiszolgáló rendszerekben. A jövőben a multimédia és az összetett információs társadalmi alkalmazások egy konvergált, hálózatok hálózatán (Internet) integrált szolgáltatási architektúrán jutnak el a felhasználókhoz. Ezen információs társadalmi technológiák gerincét a hálózatok és szolgáltatásaik adják. Magyarországon az infokommunikációs hálózatoknak és szolgáltatásoknak jelentős fejlesztő és kutatási háttere van; számos olyan hazai és multinacionális gyártóval és szolgáltatóval, akik egyben globális piaci szereplők is. Az infokommunikációs és elektronikus szolgáltatási szektor folyamatos bővülése és jelentőségének növekedése biztosítja a megszerzett tudás hosszú távú alkalmazhatóságát.

2. A megszerezhető kompetenciák:
- Infokommunikációs protokollok leírása, implementálása és konformancia tesztelése
- Mobil infokommunikációs hálózatok és rendszerek
- Hálózatmenedzsment, hálózattervezés, hálózatok üzemeltetése

3. A megszerezhető ismeretek főbb témaköréi: (a tervezett tartalmak címszó szerű összefoglalása)
- Infokommunikációs protokollok technológiai lépései
- Mobil infokommunikációs rendszerek alapelvei és felépítése
- Infokommunikációs hálózatok menedzsmentje, tervezése és üzemeltetése

4. A témakörök a legfontosabb módszertanok és technológiák:
- Protokoll specifikáció, implementáció és konformancia tesztelés módszertaná
- Az SDL (Specification and Description Language) és más formális leíró nyelvek alkalmazása
- Mobil és műholdas hálózati technológiák
- Hálózati menedzsment módszerek és eszközök, SNMP, RMON, elosztott menedzsment technológiák
- Infokommunikációs hálózatok tervezési/mérétezési módszerei és eszközei

5. A szakirány laboratóriumi képzése: 120

6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatok képzettsége mellett teljesen sajátossága, összetett és szabadon választott képzéssel rendelkezik.

II.6.2.1 A szakirány tantárgyai

II.6.2.1.1 Protokoll-technológia BMEVITMA364
(6. szemeszter, 3/1/0/v/4 kredit, TMIT)

A tantárgy célja: A tantárgy célja elméleti és gyakorlati ismeretek nyújtása a kommunikációs protokolloknak a kiterjesztett kommunikáló véges automatáknak alapuló specifikáció, implementáció és konformancia tesztelés módszertanáról. Formális leíró nyelvek alkalmazása kommunikációs protokollok technológiái lépései során. Esetenként valóban kommunikációs hálózatok jelzési protokollokjaival.
Megszerezhető készségek/képességek: Készség szintű ismeretek elsajátítása a kommunikációs protokollok specifikálása és tesztelése terén. A tantárgyat sikeresen teljesítők képesek lesznek új protokollok követelményrendszerének formális nyelvi eszközökön alapuló megfogalmazására és a protokollok megvalósítására.

II.6.2.1.2 Mobil infokommunikációs rendszerek BMEVIHIA317
(6. szemeszter, 3/1/v/4 kredit, HIT)

A tantárgy célkitűzése: A tantárgy célja napjaink és a közeljövő korszerű mobil rendszerei működésének és szolgáltatásainak áttekintése annak érdekében, hogy az infokommunikációs alkalmazásokat fejlesztő szakemberek tisztában legyenek a mobil elemeket is tartalmazó hálózatok átviteli képességeivel és lehetőségeivel.

Megszerezhető készségek/képességek: A hallgatók megismerkednek a mobil távközlés alapelveivel, a vezetékes és a vezeték nélküli világ közötti különbségekkel és az ebből fakadó műszaki problémákkal és azok megoldásának lehetőségeivel.

Rövid tematika: A mobil távközlés alapelvei. A vezetékes és a vezeték nélküli világ közötti különbségek, az ebből fakadó műszaki problémákkal és azok megoldásának lehetőségeivel.

II.6.2.2 Infokommunikációs hálózatok és szolgáltatások ágazat (TMIT)

II.6.2.2.1 IP alapú hálózatok menedzsmentje BMEVITMA365
(6. szemeszter, 3/1/v/4 kredit, TMIT)

A tantárgy célkitűzése: A tantárgy célkitűzése átfogó elméleti és gyakorlati ismeretet adni a napjaink infokommunikációs hálózait működtető menedzsment rendszerekről (elvek, architektúrák, technológiák, protokollok és megvalósítások) valamint kitekintést adni a hálózat- és szolgáltatás-menedzsment rendszerek várható fejlődési irányaira.

Megszerezhető készségek/képességek: A tantárgy készség szintű ismereteket nyújt a hálózatmenedzsment rendszerek közötti tájékozódásban, komplex hálózati és szolgáltatás-menedzsment rendszerteknikai követelményeinek meghatározásában.

monitorozás (RMON) – statisztika gyűjtés. Újabb menedzsment irányok: policy alapú menedzsment, elosztott menedzsment és ön-menedzselő hálózatok.

II.6.2.2.2 Infokommunikációs hálózatok és szolgáltatások laboratórium 1 BMEVITMA366
(6. szemeszter, 0/0/2/f/2 kredit)

Témakörök: IP alapok, IP útvonalválasztás, Tűzfal management, Hangátvitel IP hálózatokon (VoIP), Vezetékmentes LAN (WLAN), Adatbányászat, P2P hálózatok

II.6.2.2.3 Infokommunikációs hálózatok és szolgáltatások laboratórium 2 BVMEVITMA427
(7. szemeszter, 0/0/2/f/2 kredit)

Témakörök: IPv6 bemutatása, Távmenedzsment, Virtuális magánhálózatok (VPN), SDL – Protokoll tervezés, IPTV rendszerek, Hálózatbiztonság

II.6.2.2.4 Önálló laboratórium BMEVITMA367
(6. szemeszter, 0/0/4/f/6 kredit)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolításra.

II.6.2.2.5 Szakdolgozat BMEVITMA415
(7. szemeszter, 0/10/0/f/15 kredit)

Témakörök: Az információs társadalmi technológiák gerincét az infokommunikációs hálózatok és szolgáltatásaik adják, amelyek rugalmas és hatékony információközlést és feldolgozást, sokrétű szolgáltatásokat és alkalmazásokat tesznék lehetővé a számítástechnikában és a távközlésben. Az infokommunikációs hálózatok és szolgáltatások ágazat a hálózati architektúrák, szolgáltatások és protokollok konfigurálása, menedzselése, üzemeltetése és biztonsága terén nyújt megfelelő ismereteket a szakkönyvek mellett.

II.6.2.3 Mobil infokommunikáció ágazat (HIT)

II.6.2.3.1 Infokommunikációs hálózatok tervezése és üzemeltetése BMEVIHIA318
(6. szemeszter, 3/1/0/v/4 kredit, HIT)

A tantárgy célkitűzése: A tantárgy célja átfogó, gyakorlatban alkalmazható ismereteket adni a magán és szolgáltatói infokommunikációs hálózatok tervezéséhez és üzemeltetéséhez.

Megszerezhető készségek/képességek: A tantárgy készség szintű ismereteket nyújt a szabványos megközelítésekre alapozott feladat-orientált hálózatmodellezés, a hatékony tervezési és analízis
módszerek kiválasztása és alkalmazása terén. Ezen túl a hálózat-nyilvántartás és üzemeltetés, valamint hálózattervezés és analízis folyamatok integrált szemléletű tárgyalásával a szolgáltatók tervezési és üzemeltetési folyamataiban felmerülő feladatok megoldásához szükséges képességeket alapoz meg. A kapcsolódó laborfeladatok a hálózattervezés és hálózatanalízis feladatok megoldását támogató szoftvereszközök körébe ad betekintést.

Rövid tematika: A hálózattervezési témakört a tantárgy az igények és követelmények felmérésétől a technológia- és architektúra-választási kérdéseken át, az egyszerű méretezési és konfigurálási feladatokig öleli fel. A tantárgy ismerteti a hálózattervezés, hálózatanalízis és hálózatkonfigurálás alapvető folyamatait és módszereit, áttekinti a hálózat-nyilvántartási, hálózat-üzemeltetési rendszerekben, valamint a hálózattervezés során alkalmazott rendszertechnikai alapú modellezés módszereit, a hálózat-nyilvántartási és hálózat-üzemeltetési rendszerek általános felépítését, működését. Az átadott ismereteket a nyilvántartás-üzemeltetés-tervezés-analízis közti kapcsolatok tárgyalása integrálja.

II.6.2.3.2 Mobil infokommunikációs laboratórium 1 BMEVIHIA319
(6. szemeszter, 0/0/2/f/2 kredit)

Témakörök: IP mobilitás, Vertikális handover, WLAN szolgáltatás minőség, Látogatás mobil operátor hálózatfelügyeleti rendszerében, GSM, GPRS

II.6.2.3.3 Mobil infokommunikációs laboratórium 2 BMEVIHIA426
(7. szemeszter, 0/0/2/f/2 kredit)

Témakörök: Mobil szoftverek, Mobilitás menedzsment, IMS vizsgálata, RFID, Mobil rendszerek biztonsági problémái, Mobil transzport protokollok

II.6.2.3.4 Önálló laboratórium BMEVIHIA320
(6. szemeszter, 0/0/4/f/6 kredit)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkához és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolításra.

II.6.2.3.5 Szakdolgozat BMEVIHIA422
(7. szemeszter, 0/10/0/f/15 kredit)

Témakörök: Az infokommunikációs alkalmazások és szolgáltatások fejlesztése komoly körültkintést igénylő feladat tekintettel a hordozó hálózatok összetettségére. A fejlesztés során mindig szem előtt kell tartani, hogy a kiszolgáló hálózat milyen képességekkel és korlátokkal bír, különös tekintettek arra, ha mozgó terminálokat is használni akarunk. A mobil infokommunikáció ágazat a mobil hozzáférési hálózatokat is tartalmazó integrált rendszerekről nyújt biztos ismereteket azon leendő szakemberek számára, akik ilyen hálózatokra kívánnak szolgáltatásokat/alkalmazásokat fejleszteni, illetve rész kivánnak venni ezen hálózatok fejlesztésében, üzemeltetésében.
II.6.3 Informatikai technológiák szakirány (AAIT, IIT, MIT)

(ITU Engineering)

A szakirány koordinátora: AAIT

Ágazatok:
- Szoftverfejlesztés (AAIT)
- Rendszerfejlesztés (IIT)
- Rendszertervezés (MIT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
Az elmúlt néhány évben az informatikai technológiák robbanásszerű fejlődésének lehettünk tanúi. Az informatikai technológia, többek között, magába foglalja az adatvezérlés technológiák tervezési és fejlesztési aspektusait, a modell alapú, objektumorientált tervezési és megvalósítási elveket, valamint a nagy kiterjedésű IT infrastruktúrák rendszer- és szolgáltatás-felügyeleti módszereinek kérdéseit. A szakirány a korszerű technológiák által kínált új lehetőségek alapján célozza meg, hogy szakmai ismereteket rendszeresít formában, folyamatosan aktualizált tartalommal adjon át, jártasságot és alkalmazási készséget fejlesztesse ki a hallgatóságban az informatikai rendszerek tervezése, fejlesztése és felügyeletének területén.

2. A megszerezhető kompetenciák:
A szakirány elvégzése után a hallgatók képessé válnak:

- adatbázisra épülő komplex (többretegű) rendszerek megvalósítására,
- adatbázisok teljesítményoptimalizálására,
- kliensoldali alkalmazások fejlesztésére,
- vékony, vastag és mobilkliens alkalmazások fejlesztésére,
- objektumorientált tervezésre és programozásra,
- architekturális mintákat megvalósító komponensek alkalmazására,
- szoftverek metrikák megpróbáló elemzésére,
- informatikai rendszerek teljesítményének és szolgáltatásminőségének mérésére és szabályozására,
- IT rendszerek szűk keresztmetszetének megjegyzései, elemzésére és javítására,
- bonyolult, sok felhasználó (pl. üzleti) IT infrastruktúrák méretezésére, ilyen rendszerek tervezésére illetve a szervezetek IT támogató munkájába rendszermérnöki jelleggel való bekapcsolódására.

3. A megszerezhető ismeretek főbb témakörei:

- Többrétegű alkalmazásfejlesztés ismerete az adattól a megjelenítési rétegig,
- XML-alapú adatkezelés,
- objektumorientált tervezés és programozás szabványos modelljei, programnyelvei, fejlesztő környezetek,
- elemzési és tervezési minták, reengineering, reverse engineering, refaktorálás, antipatternek,
- nagyvállalati rendszerfelügyelet, konfigurációmenedzsment, szoftverkarbantartás,
- teljesítménymonitorozás, egyedi alkalmazások teljesítménymérése, felhasználó monitorozása,
- számítógéprendszerbe behatolásvédelme,
- heterogén szoftver környezetek menedzsmentje.

4. A témakörökhoz kapcsolódó legfontosabb módszertanok és technológiák:

- adatvezérlés technológiák tervezési elvei, adatbázis-alapú technológiák,
- MS SQL Server, Oracle Server, MySQL, ADO, OleDb, ODBC, JDBC,
- .NET és Java technológiák,
- objektumorientált módszertanok, UML
- XML, XSLT, XPath, DTD és XSD,
- CORBA,
- elemzési minták, reengineering, reverse engineering, refaktorálás, antipatternek
V 1.6 2013. június 24.

5. A szakirány laboratóriumi képzése:
A kapcsolódó szakirány laborok és önálló laboratóriumi foglalkozások keretében magába foglalja a gyakorlati ismeretek széles körének elsajátítását, egy szakterület elmélyült tanulmányozását, önálló gyakorlati feladat megoldását.

6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatokért felelős tanszékeken elvégzendő önálló laboratórium és szakdolgozat-készítés keretében valósul meg.

II.6.3.1 A szakirány tantárgyai

II.6.3.1.1 Adatvezérelt alkalmazások fejlesztése BMEVIAUA369
(6. szemeszter, 3/1/0/v/4 kredit, AAIT)

A tantárgy célkitűzése: A tantárgy célja, hogy megismertesse a hallgatókat az adatvezérelt alkalmazások fejlesztésének különböző aspektusaival. A tantárgy keretében a hallgatók jártasságot szereznek adatbázisra épülő komplex rendszerek megvalósításában, megismerik az alkalmazott módszereket és technológiákat az adatrólátogtól kiindulva a megjelenítési réteggel bezárólag.

Megszerezhető készségek, képességek: A tantárgy elvégzése során a hallgatók elsajátítják az iparban használatos és legelterjedtebb adatbázis-motorok felépítésével és működésével, hatékony adatbázis-lekérdezések összeállításával és optimalizálásával, tranzakciók, zárolások, izolációs szintek jelentőségével és használatával, adatbázisok szerveroldali programozási lehetőségeivel (tárolt eljárások, stb.), továbbá az először, nagy megbízhatóságú adatbázis-rendszerek tervezésével és működésével kapcsolatos alapvető ismereteiket.

II.6.3.1.2 Objektumorientált szoftvertervezés BMEVIIIJA371
(6. szemeszter, 3/1/0/v/4 kredit, IIT)

A tantárgy célkitűzése: A tantárgy célja a modell-lapú, objektumorientált tervezés és megvalósítás elveinek és módszereinek elsajátítása, azoknak a gyakorlatban történő tudatos alkalmazása Java környezetben, fejlesztői keretrendszerek támogatásával, minőségi jellemzők kiértékelésével.

Megszerezhető készségek, képességek: A tantárgyat elvégző hallgatók képessé válnak: magas szakmai színvonalon objektumorientáltan tervezni és programozni, különböző környezetekben az architekturnál mintákat megvalósító komponenseket alkalmazni, a szoftvertervezési és -elemzési minták figyelembe vételével hatékony és biztonságos terveket készíteni, valamint szoftvereket metrikák alapján elemezni és az eredmények alapján azokat áttervezni, karbantartani, a minőséget javítani.

II.6.3.1.3 Intelligens rendszerfelügyelet BMEVIMIA370

(6. szemeszter, 3/1/0/v/4 kredit, MIT)

A tantárgy célkitűzése: A tantárgy területe a nagy kiterjesztésű IT rendszer- és szolgáltatás-felügyeleti módszerei tárgyalva a terület vonatkozó szabványait is. A tantárgy kiterjed a kritikus infrastruktúrák és az on-demand szemléletű informatikai infrastruktúrákhoz szükséges IT felügyeleti folyamatok kialakítására is.

Megszerezhető készségek, képességek: A tantárgy elvégzése során a hallgatók elsajátíthatják a nagy, heterogén informatikai rendszerek szolgáltatásközpontú felügyeletének tervezéséhez és mérnöki üzemviteléhez szükséges szemléletmódot. Az elterjedt szabványok és kvázi-szabványok áttekintésével a hallgatók megértenek az IT felügyeleti folyamatok kialakítására.

II.6.3.2 Szoftverfejlesztési ágazat (AAIT)

II.6.3.2.1 Informatikai technológiák laboratórium 1 **BMEVIAUA372**
(6. szemeszter, 0/0/2/f/2 kredit, AAIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.

II.6.3.2.2 Informatikai technológiák laboratórium 2 **BMEVIAUA425**
(7. szemeszter, 0/0/2/f/2 kredit, AAIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.

II.6.3.2.3 Önálló laboratórium **BMEVIAUA375**
(6. szemeszter, 0/0/4/f/6 kredit, AAIT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg Őket és ott is kerülnek lebonyolításra.

II.6.3.2.4 Szakdolgozat **BMEVIAUA406**
(7. szemeszter, 0/10/0/f/15 kredit, AAIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

II.6.3.3 Rendszerfejlesztési ágazat (IIT)

II.6.3.3.1 Informatikai technológiák laboratórium 1 **BMEVIIIA374**
(6. szemeszter, 0/0/2/f/2 kredit, IIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.

II.6.3.3.2 Informatikai technológiák laboratórium 2 **BMEVIIIA428**
(7. szemeszter, 0/0/2/f/2 kredit, IIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.
II.6.3.3.3 Önálló laboratórium **BMEVIIIA377**
(6. szemeszter, 0/0/4/f/6 kredit, IIT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkához és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolításra.

II.6.3.3.4 Szakdolgozat **BMEVIIIA412**
(7. szemeszter, 0/10/0/f/15 kredit, IIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

II.6.3.4 Rendszertervezési ágazat (MIT)

II.6.3.4.1 Informatikai technológiák laboratórium 1 **BMEVIMIA373**
(6. szemeszter, 0/0/2/f/2 kredit, MIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.

II.6.3.4.2 Informatikai technológiák laboratórium 2 **BMEVIMIA429**
(7. szemeszter, 0/0/2/f/2 kredit, MIT)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak, amely méréseket az egyes ágazatokat gondozó tanszékek dolgozzák ki és azon a tanszéken is kerülnek lebonyolításra.

II.6.3.4.3 Önálló laboratórium **BMEVIMIA376**
(6. szemeszter, 0/0/4/f/6 kredit, MIT)

Önálló feladat megoldása az ágazatot gondozó tanszéken, a hallgató és a konzulens által meghatározott tématerületen. A tantárgy lehetőséget ad egy témakör elmélyült tanulmányozására, az önálló ismeretszerzés és problémanegoldó készség fejlesztésére, ezeken keresztül a szakdolgozatra való közvetlen felkészülésre.

II.6.3.4.4 Szakdolgozat **BMEVMIA411**
(7. szemeszter, 0/10/0/f/15 kredit, MIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
II.6.4 Média-informatika és -biztonság szakirány (TMIT, HIT)

(Media Informatics and Security)
A szakirány koordinátora: TMIT

Ágazatok:
Média-informatika (TMIT)
Médiatechnológiák (HIT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
Az informatika, a távközlés és a média konvergenciája egyre több szolgáltatást hoz létre. Az új, személyre szabható, interaktív világban az Internet, a televízió, a telefónia, a személyes tartalmak közlése és fogyasztása egységes hálózaton és keretrendszerben jut el a felhasználókhoz. A mobiltelefon, a kamera, a TV stb. a hálózaton át egymáshoz és professzionális tartalom-rendszerekhez kapcsolódnak. Egyre több szolgáltatás élvezhető mobil eszközökkel. Az új környezetben új kihívások és megoldandó feladatok jelentek meg: a médiabiztonság, médiaközmű folyamatos fenntartása, a helyfüggetlen alkalmazások, a tartalom minél hatékonyabb kódolása, dekódolása és továbbítása, a tartalomfeldolgozás automatizálása.

Magyarországon is sok vállalat foglalkozik médiatartalom előállításával, szerkesztésével és terjesztésével. A szakirányon végzett hallgatóknak számos elhelyezkedési lehetőség kínálkozik a szolgáltató, fejlesztő és gyártó vállalatoknál, a multimédia-tartalmakra épülő távközlési, szórakoztatási, oktatási, egészségügyi, elektronikus kormányzati és sok más területen.

2. A megszerzhető kompetenciák:
- Az információkeresés és -feltárás, az adatbányászat, a média-adatbázisok alkalmazása, multimédia információs rendszerek ismerete.
- Multimédia-állományok műszaki jellemzőinek, a stúdiótechnika alapjainak és a műsorterjesztő hálózatok rendszertechnikájának ismerete,
- Adat- és médiabiztonsági ismeretek

3. A megszerezhető ismeretek főbb témakörei:
- Tartalom-ábrázolás, -elemzés, -keresés és -szűrés
- CMS rendszer-architektúra, dokumentummenedzsment, vállalati tartalommenedzs-ment, webes tartalomkezelés
- Média-tartalom előállításának, kódolásának, továbbításának és megjelenítésének technológiái
- Média-információk adatbiztonsága; média-tartalmak védelme és titkosítása
- Tartalom alapú információkezelés

4. A témakörökhoz kapcsolódó legfontosabb módszertanok és technológiák:
- Tartalom-címkézés, -rendezés; metaadat-előállítás és -kezelés; információ keresés/böngészés,
- digitális archiválás, TV/3Play IP hálózaton,
- webes tartalomkezelés, honlapok, portálok, állománycserélők, peer2peer hálózatok, tartalomhálózatok. Wiki rendszerek,
- stúdiótechnika, műsorszórás,
- nyilvános kulcsú titkosítás, kriptográfia, információcsoportosítási algoritmusok, adatbányászat,
- szteganográfia, szteganalízis, média titkosítása, digitális jogkezelés

5. A szakirány laboratóriumi képzése: 100 fő

6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatokért felelős tanszékeken elvégzendő szakirány laboratórium, önálló laboratórium és szakdolgozat készítés keretében valósul meg.
II.6.4.1 A szakirány tantárgyai

II.6.4.1.1 Tartalomkezelési technológiák BMEVITMA368
(6. szemeszter, 3/1/0/v/4 kredit, TMIT)

A tantárgy célkitűzése: A tantárgy célja, hogy a félév végére a hallgatók elsajátítsák a tartalomkezelő rendszerek üzemeltetéséhez, frissítéséhez szükséges ismereteket, megtanulják az ilyen rendszerekben használt módszereket. A tantárgy mérnöki szempontból mutatja be tartalomkezelő rendszerek jellemzőit, megismerteti a hallgatók körére a tartalomkezelő rendszerek architektúráját, infrastruktúráját és alkalmazásait.

Meglétes készségek/képességek: A tantárgy megismeri a tartalomkezelő rendszerek felépítését és feladatait, készség szintű ismereteket nyújt üzemeltetésükhöz, megalapozza a képességet e rendszerek kiválasztására és fejlesztésére.

II.6.4.1.2 Médiatechnológiák BMEVIHIA321
(6. szemeszter, 3/1/0/v/4 kredit, HIT)

A tantárgy célkitűzése: A tantárgy keretében a hallgatók áttekintő ismereteket kapnak a médiatartalom előállítását, kódolását, továbbítását és kezelését lehetővé tevő technológiákról annak érdekében, hogy e rendszerekben az egyes megoldásokat szakszerűen pozícionálni tudják, és tisztában legyenek azok alkalmazási lehetőségeivel.

Meglétes készségek/képességek: A tantárgy készség szintű ismereteket nyújt a médiatechnológiai megoldások közötti eligazodásához, a különböző technológiák közötti tájékozódáshoz, alapvető szolgáltatási és technikai követelmények meghatározásához.

Rövid tematika: Médiatartalom formátumok. Hagyományos videótartalom kódolási technikák, audió és videó forráskódolási eljárások (MPEGx) és tulajdonságai, digitális adatfolyam továbbítási/csomagolási formátumok (PS, TS, IP).

Médiafejlesztő és médiamegjelenítő eszközök: hang, kép- és mozgókép beviteli eszközök, professzionális kamerák felépítése, szinkronizálás, többszörös hangrendszerek, SRTV, ETV, HDTV, televíziós kijelzők elve, felépítése és azok tulajdonságai, vevőkészülékek és a velük szemben támasztott követelmények.

Médiatovábbító hálózatok rendszertechnikája: műsorszétszóló hálózatok, műsorszóró adók rendszertechnikája, kábeltovábbító rendszerek felépítése, multimédia továbbítása más célú digitális adattovábbító hálózatok (számítógépes hálózatok, mobiltelefonos hálózatok) felett.
II.6.4.2 Médiainformatika ágazat (TMIT)

II.6.4.2.1 Médiabiztonság **BMEVITMA378**
(6. szemeszter, elágazó, 3/1/0/v/4 kredit, TMIT)

A tantárgy célkitűzése: A tantárgy célja, hogy átfogó elméleti és gyakorlati ismereteket nyújtson a médiabiztonság témakörében. A tantárgy bemutatja azon eszközök, módszerek elrendezését és gyakorlatát, amelyek segítségével a médiatartalmak védelmét és titkosíthatók, valamint az alkalmazott védekezési módszerek elemzhetők. A tantárgy ismerteti a vonatkozó jogszabályi környezetet, valamint áttekinti a szerzői jogokat.

Megszerezhető készségek/képességek: A tantárgy készség szintű ismereteket nyújt a médiarendszer legfontosabb biztonsági feladatnak értelmezéséhez és specifikálásához, a megoldások kiválasztásához és üzemeltetéséhez.

II.6.4.2.2 Médiainformatika laboratórium 1 **BMEVITMA379**
(6. szemeszter, 0/0/2/f/2 kredit, TMIT)

II.6.4.2.3 Médiainformatika laboratórium 2 **BMEVITMA432**
(7. szemeszter, 0/0/2/f/2 kredit, TMIT)

Témakörök: Médiafolyam-kezelés, műsorterjesztés, P2P tartalomhálózat, hang- és képminőségélemezés, PC-TV konvergencia, VOIP mérés, beszédkódolás, beszédalapú szolgáltatások, média vízjelzés,a web biztonsagi kérdései, portálmenedzsment.

II.6.4.2.4 Önálló laboratórium **BMEVITMA380**
(6. szemeszter, 0/0/4/f/6 kredit, HIT)

Önálló feladat megoldása az ágazatot gondozó tanszéken, a hallgató és a konzulens által meghatározott tématerületen. A tantárgy lehetőséget ad egy témakör elmélyült tanulmányozására, az önálló ismeretszerzés és problémamegoldó készség fejlesztésére, ezeken keresztül a szakdolgozatra való közvetlen felkészülésre.
II.6.4.2.5 Szakdolgozat **BMEVITMA416**
(7. szemeszter, 0/10/0/f/15 kredit, TMIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

II.6.4.3 Médiatechnológiai ágazat (HIT)

II.6.4.3.1 Adatbiztonság és tartalom alapú információkezelés **BMEVIHIA322**
(6. szemeszter, elágazó, 3/1/0/v/4 kredit, HIT)

A tantárgy célkitűzése: A tantárgy a médiainformációk adatbiztonságával és a tartalomalapú információkezelés algoritmusaival foglalkozik. A tananyag alapján a hallgatók készséget szereznek a megfelelő adatbiztonsági protokollok kiválasztásában és alkalmazásában, valamint a tartalomalapú információ-feldolgozó algoritmusok használatában.

Megszerezhető készségek/képességek: A tantárgy készség szintű ismereteket nyújt adatbiztonsági megoldások kiválasztásához és alkalmazásához, valamint a tartalom alapú információkezelési algoritmusok felhasználásához.

Rövid tematika: Az adatbiztonsági rendszerek általános felépítése (CIA háromszög). Hozzáférési kontrollok. A kriptográfiai algoritmusok rövid összefoglalása (RSA, Hash függvények...stb.), tradicionális titkosítók analízise, nyilvános kulcsú titkosítás, protokollok (ECB, CBS, OFB, STR, digitális aláírás), szabványok, jogi szabályozás. Tartalom alapú címzhetőség, asszociatív leképezések, dinamikus asszociatív memóriák és stabilitásuk, kapacitásanalízis, információ csoportosítására szolgáló algoritmusok.

II.6.4.3.2 Médiatechnológiai laboratórium 1 **BMEVIHIA323**
(6. szemeszter, 0/0/2/f/2 kredit, HIT)

II.6.4.3.3 Médiatechnológiai laboratórium 2 **BMEVIHIA431**
(7. szemeszter, 0/0/2/f/2 kredit, HIT)

Témakörök: Modulációs módszerek vizsgálata, videó- és hang-bitsebesség-csökkentés algoritmusaik, fekete-fehér és színes televízió vizsgálata, MPX sztereo jel kódolása és dekódolása, DVB-T rendszer szimulációja

II.6.4.3.4 Önálló laboratórium **BMEVIHIA324**
(6. szemeszter, 0/0/4/f/6 kredit, TMIT)

Önálló feladat megoldása az ágazatot gondozó tanszéken, a hallgató és a konzulens által meghatározott tématerületen. A tantárgy lehetőséget ad egy témakör élőben a tanulmányozására, az önálló ismeretszerzés és problémamegoldó készség fejlesztésére, ezekben keresztül a szakdolgozatra való közvetlen felkészülésre.

II.6.4.3.5 Szakdolgozat **BMEVIHIA413**
(7. szemeszter, 0/10/0/f/15 kredit, HIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
II.6.5 Vállalati információs rendszerek szakirány (ETT, TMIT, SZIT)

A szakirány koordinátora: ETT
Ágazatok: nincsenek

1. A megélzett szakterület főbb jellegzetességei, trendjei:
A vállalatok felismerték, hogy a piaci versenyben maradnak, ha nem rendelkeznek kellő informatikai infrastruktúrával. A piaci kihívásokra gyorsan és megbizhatóan csak úgy tudnak reagálni, ha gazdálkodási folyamatai teljes egészében átfogó informatikai rendszerekkel támogatják. Tevékenységük érez integrált vállalatirányítási informatikai rendszerrel irányítják, amelyek az üzleti, gazdálkodási, termeléstervezési és –irányítási folyamatok valamennyi elemét együttessé kezelik. Ezen rendszerek bevezetése megkezdődött nemcsak a nagyyállalati szférában, hanem a kis és a közepes méretű vállalkozásoknál is. A bevezetést követően a rendszert folyamatosan felügyelni kell, valamint a belső és a külső követelményekhez folyamatosan illeszteni kell. A szervezetközi együttműködés, mint például az ellátási lánc menedzsment (SCM), vagy az elektronikus államigazgatás (E-Government) újabb kihívásokat támaszt a rendszerfejlesztőivel és üzemeltetőivel szemben. A működés alatt felhalmozódó vállalati információvagyónak megközlik, az abban rejlő összeefüggések felismerése a jelen és a jövő nagy kihívásai. Folyamatos feladatot jelent a meglévő rendszerekben felügyelni, mint például a vevőkapcsolatokat menedzselő (CRM) és erőforrás–tervező (ERP) rendszereken elszórtan meglévő adatok és információ kinyerése, egységes kezelése. A totális integráció helyett az együttműködő rendszerek megvalósítása jelenti a legfőbb fejlődési irányt.

2. A megszerezhető kompetenciák:
A szakirányon alapdiplomát szerzettek legfőbb kompetenciája a vállalati rendszerek, mint szoftveralkalmazások bevezetése, üzemeltetése, fejlesztése és illesztése más rendszerekhez a folyamatosan megújuló igények szerint. Képesek lesznek a rendszerek működését átlátni, azokban megvalósított vállalati folyamatokat felismerni, azokat a valós üzleti folyamatokban alkalmazni, azokat átprogramozni a valós igényeknek megfelelően. Alkalmassá válnak a mesterképzésen való továbbtanulásra.

3. A megszerezhető ismeretek főbb témaköréi:
 o Tipikus vállalati alkalmazások funkcionális és műszaki architektúrája, működési alapelvei.
 o Termeléstervezés és –irányítás feladatai, informatikai támogatása a vezetés szempontjából.
 o Törzsadatok és azok meghatározási módszerei, a mozgásnémetok, transzakciók, modulok felépítése
 és egymásra épülése. Gazdálkodási alapismeretek, események, folyamatok, információmenedzsment.
 o Vállalati alkalmazások algoritmusai, tipikus programozási feladatok.
 o Adatbányászati algoritmusok és alkalmazási területeik, futási optimalizálás.

4. A témakörökhöz kapcsolódó legfontosabb módszertanok és technológiák:
A szakirányok oktatási alapelve a folyamatszemlélet. Megtanítja a tipikus vállalati folyamatokat, átvelve a klasszikus funkcionális területek határain. Valódi vállalati rendszereken keresztül mintapéldákat mutat be, illetve ilyen rendszereken gyakorlatot tart a hallgatók. A fejlesztési feladatok végrehajtásában megköveteli az alapképzésben elsajátított szoftverfejlesztési módszertanok alkalmazását.

5. A szakirány laboratórium igénye:
Tipikus számítógépes munkahelyek. Ezekről a hallgatók bejelentkeznek az alkalmazásokat futtató távoli szerverre, és azon a valósághoz hű környezetben oldják meg kiadott feladataikat. Például a használt rendszertípusokra: integrált vállalatirányítási rendszer, ügyfélcapszolati rendszer, adatbányászatot támogató rendszer.
II.6.5.1 A szakirány tantárgyai

II.6.5.1.1 Vállalatirányítási rendszerek **BMEVIETA382**
(6. szemeszter, 3/1/0/v/4 kredit, ETT)

A tantárgy célkitűzése, hogy bemutassa a vállalatok értékteremtő folyamatait, ezek informatikai oldalát, a vállalatirányítási informatikai rendszerek típusait, legfontosabb feladatait. Ismeretet adni a kiválasztás, bevezetés, a működtetetés és a továbbfejlesztés végrehajtásához.

Megszerezhető késések, képességek: A tantárgy kialakítja a hallgatókban a folyamatszemléletet. Megismerik a legfontosabb vállalati információs folyamatokat. Képesek lesznek a folyamatok között eligazodni, a releváns törzsadatokat kiválasztani, a rendszer bevezetésében részt venni, a bevezetett rendszert üzemeltetni, kiegészítő fejlesztéseket elvégezni, más rendszerekkel való kapcsolatot kiépíteni.

II.6.5.1.2 Termelésinformatika **BMEVIETA383**
(6. szemeszter, 3/1/0/v/4 kredit, ETT)

A tantárgy célkitűzése, hogy bemutassa a tipikus termelési folyamatokat, ezek informatikai oldalát, a számtitógépes termelésiirányítási rendszerek típusait, legfontosabb tulajdonságait, valamint a számtitógépes irányítás bevezetésének és üzemeltetésének feladatait.

Megszerezhető késések, képességek: A tantárgyat elsajátító hallgatók megszerzik azt a képességet, hogy eligazodjanak egy vállalat termelési rendszerében, azonosítani tudják az anyagellátás, az anyagáramlás és -megmunkálás folyamatait, az anyagellátás és irányítási igényeit. Képesek lesznek a folyamatok implementálására számítógépes termelésirányítási rendszerben, ilyen rendszerek üzemeltetésére, kiegészítő fejlesztésére.

II.6.5.1.3 Gazdálkodási információmenedzsment **BMEVITMA381**
(6. szemeszter, 3/1/0/v/4 kredit, TMIT)

A tantárgy célkitűzése: Bemutatni a gazdálkodó szervezetek típusait, a gazdálkodást meghatározó külső tényezőket és belső folyamatokat. A gazdálkodás felhasználó oldaláról mutassa be az információkezelési és -feldolgozási módszereket.
Megszerezhető készségek, képességek: A hallgatók gyakorlatoryén és vezetői léptékű ismereteket kapnak a gazdálkodás logikájáról. Az elméleti alapozáson túlmenően, esetépítként keresztül terveznek információ-áramlási folyamatokat, használják gazdálkodási adatbázisokat és elemeznek terv-tény elterjedéseket.

II.6.5.1.4 Adatbányászat laboratórium BMEVISZA384
(6. szemeszter, 0/0/2/f/2 kredit, SZIT)

A tantárgy célkitűzése: hogy bemutassa az adatbányászati algoritmusokat és alkalmazási területeik, futásidő optimalizálás módszereit és lehetőségeit.

Megszerezhető készségek, képességek: A követelményeket teljesíti hallgatók képesek lesznek a vállalati adatok ad hoc elemzésére, az adatokból új összefüggések feltárására, a vállalati portál előnyös pozícióba helyezésére a webes keresőgépek listáján.

II.6.5.1.5 Vállalati rendszerek programozása laboratórium BMEVIETA433
(7. szemeszter, 0/0/2/f/2 kredit, ETT)

A tantárgy célkitűzése: A tantárgy gyakorlati ismereteket nyújt a vállalat- és termelésirányítási rendszerek felépítéséről, működéséről, a tipikus kiegészítő programozási feladatokról és a feladatok megoldási módszereiről konkrét működő rendszárban.

Megszerezhető készségek, képességek: A követelményeket sikerrrel teljesíti hallgatók képesek lesznek kiegészítő modulok, funkciók tervezésére és implementálására.

Rövid tematika: Vállalati rendszerkörnyezetben lekérdező programok írása és formátumozott egyedi jelentések készítése; külső rendszerek illesztése export – import csatolók felhasználásával; vállalati grafikus folyamatmodell-részletek elemzése, értelmezése és a folyamatot támogató programok elkészítése.

II.6.5.1.6 Önálló laboratórium BMEVIETA386
(6. szemeszter, 0/0/4/f/6 kredit, ETT)

II.6.5.1.7 Önálló laboratórium BMEVISZA388
(6. szemeszter, 0/0/4/f/6 kredit, SZIT)
II.6.5.1.8 Önálló laboratórium **BMEVITMA387**
(6. szemeszter, 0/0/4/6 kredit, TMIT)

A választható témák a képzés célkitűzéseivel összhangban a szakirányt kiszolgáló tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az érintett tanszékek hirdetik meg őket és ott is kerülnek lebonyolításra.

II.6.5.1.9 Szakdolgozat **BMEVIETA420**
(7. szemeszter, 0/10/0/15 kredit, ETT)

II.6.5.1.10 Szakdolgozat **BMEVISZA423**
(7. szemeszter, 0/10/0/15 kredit, SZIT)

II.6.5.1.11 Szakdolgozat **BMEVITMA417**
(7. szemeszter, 0/10/0/15 kredit, TMIT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása a szakirányt kiszolgáló tanszékek valamelyikén, konzulens felügyeletével.
II.7 Szabadon választható tantárgyak

A szabadon választható tantárgycsoportban a hallgatók ismereteik bővítésére általuk szabadon választott tantárgyakat vesznek fel - minimum 10 kreditpont kiméretben - a Kar, más karok, vagy más egyetemek tantárgyainak kínálatából. A felvett tantárgyak egy része több-kevesebb átfedést is tartalmazhat más tantárgyakkal. Figyelem: ha a mintatantervben szereplő kötelező, illetve a tantervi követelmények teljesítéséhez már figyelembe vet egyéb tantárgyak együttesen egy tantárgy tananyagának több mint 25%-át tartalmazzák, úgy a tantárgy felvehető, de a tantervhez kapcsolódó követelmények teljesítéséhez nem vehető figyelembe (BME TVSZ 18. § (2))

A kar által ajánlott szabadon választható tantárgyak kínálata évről évre változik. Lévén ezen tantárgyak célja az ismeretek bővítése, mind az alapképzés és a mesterképzés szabadon választható tantárgyainak listái, mind a különböző szakok hasonló listái átfedhetik egymást. A jelenleg érvényes lista a kar honlapján megtalálható.
III. VILLAMOSMÉRNÖKI ALAPSZAK

A képzés célja villamosmérnökök képzése, akik természettudományi, műszaki és informatikai, valamint gazdasági, humán és nyelvi ismereteik, továbbá az ezekhez kapcsolódó készségeik révén villamosmérnöki feladatok ellátására képesek. Ennek megfelelően az alapfokozat és a villamosmérnök szakképzettség birtokában közreműködhetnek villamos és elektronikus eszközök, berendezések, összetett rendszerek és létesítmények tervezésében, ezek gyártása és üzemeltetése során bemérési, minősítési, ellenőrzési feladatokat oldhatnak meg, részt vehetnek üzembe helyezésükben, illetve villamosmérnöki ismereteiket igényli üzemeltetői, szolgáltatói, szervizmérnöki, termékmenedzseri, továbbá ezekhez kapcsolódó irányítói feladatokat láthatnak el.

A képzésben résztvevők a szakon belül egy szűkebb szakmai területen (szakirányban) alkotó mérnöki munkára készülnek fel, és képessé válthatnak a mesterszintű villamosmérnök képzésben való részvételre. Alapfokozat birtokában a villamosmérnökök – a szakirányokat is figyelembe véve – képesek elektronikai alkatrész- és mikroelektronikai ismereteikre is alapozva egyszerű analóg és digitális áramkörök tervezésére és kivitelezésére,

- elektronikai berendezések és rendszerek tervezésére, analizálására, hibajavítására,
- alapvető hardver és szoftver ismereteiket felhasználva egyszerű analóg és digitális áramkörök tervezésére és kivitelezésére,
- a villamos és nem villamos mérési módszerek elveinek gyakorlati alkalmazásával,
- főbb villamosipari anyagok és technológiák felhasználását igénylő feladatok megoldására,
- irányítástechnikai eszközök alkalmazásával,
- a villamos energiaellátás és –átalakítás folyamatához kapcsolódó villamosmérnöki feladatok megoldására,
- alapvető híradástechnikai és infokommunikációs rendszerekhez kapcsolódó villamosmérnöki feladatok megoldására,
- alkalmazás-szintű ismereteik felhasználásával a kiválasztott szakirányban villamosmérnöki feladatok megoldására (tervezés, fejlesztés, üzembe helyezés, üzemeltetés, szolgáltatás, karbantartás).

Az alapképzés során megszerzendő ismeretek (210 kredit):

<table>
<thead>
<tr>
<th>Természettudományos alapismeretek</th>
<th>50 kreditpont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazdasági és humán ismeretek</td>
<td>20 kreditpont</td>
</tr>
<tr>
<td>Szakmai törzsanyag</td>
<td>85 kreditpont</td>
</tr>
<tr>
<td>Differenciált szakmai ismeretek</td>
<td>45 kreditpont</td>
</tr>
<tr>
<td>Szabadon választható tantárgyak ismeretkörei</td>
<td>10 kreditpont</td>
</tr>
<tr>
<td>Kritériumtárgyak</td>
<td></td>
</tr>
</tbody>
</table>

Előtanulmányi rend:
Előtanulmányi rend a villamosmérnöki BSc szakon
2013. április 23.

Jegyzékek:
- Folytonos vonal & nyíl: Kredit megszerzése kötelező a tárgy felvételéhez.
- Szaggatott vonal & nyíl: Általános megszerzése kötelező a tárgy felvételéhez.
- Folytonos vonal & pont: Legkisebb ezzel a tárgyval vehető fel együtt.
- Kék háttér: A szakirányba kerüléshez szükséges a kredit teljesítése.
III.1 Természettudományos alapismeretek

Matematika A1 - Analízis

(TE90AX00, 1. szemeszter, 4/2/0/v/6 kredit, Analízis Tanszék)

1. **A tantárgy célkitűzése**
Kötelező alaptárgy a mérnök- és gazdasági képzésekben.

2. **A tantárgy tematikája**

Matematika A2 - Vektorfüggvények

(TE90AX02, 2. szemeszter, 4/2/0/v/6 kredit, Algebra Tanszék)

1. **A tantárgy célkitűzése**
Kötelező alaptárgy a mérnök- és gazdasági képzésekben.

2. **A tantárgy tematikája**
LINEÁRIS ALGEBRA
A lineáris egyenlőtrendszerek megoldása
Alkalmazások: Lineáris egyenlőtrendszerek a globális helymeghatározásban (GPRS), Kirchoff-törvények, hálózatok analízise, polinom-interpoláció.

Mátrixaritmetika

Determinánsok

Lineáris tér

Lineáris operátorok és mátrixok

VÉGTELEN SOROK

Numerikus sorok

Alkalmazások: Elemi függvények értékeinek kiszámítása, becslése. Függvényosorozatok, -sorok
Pontonkénti és egyenletes konvergencia. (Egyenletes) konvergenciakritérium és megfelelőség. Az egyenletesen konvergens sorozatok és sorok alapvető tulajdonságainak invarianciája a limesre ill. a sorösszegezésre. Kritériumok egyenletes és nem egyenletes konvergenciára. Hatványosorok

Alkalmazások: Taylor-sor a közelítő számításokban. Az elemi függvények értékeinek kiszámítása és fontos matematikai állandók numerikus értékeinek meghatározása, a zsebszámológépek működése. Integrálás, hatáértékszámítás, differenciálegyenletek közelítése sorfejtéssel. Fourier-sorok

TÖBBVÁLTOZÓS FÜGGVÉNYEK

Alapfogalmak

Alkalmazások: Skalár-vektor-vektor függvény (pl. hőmérséklet), vektor-skalár-vektor függvény (pl. mozgás pályája idő függvénye), vektor-vektor-vektor függvény (pl. erőtér, folyadék, gáz áramlási sebessége a tér pontjaiban, geometriai transzformációk).

Differenciálszámítás

Integrálászárítás

Matematika A3

(TE90AX09, 3. szemeszter, 2/2/0/v/4 kredit, Algebra Tanszék)

1. A tantárgy célkitűzése
Kötelező alaptárgy a mérnök- és gazdasági képzésekben.

2. A tantárgy tematikája
Matematika A4 - Valószínűségszámítás
(TE90AX08, 3. szemeszter, 2/2/0/f/4 kredit, Sztochasztikai Tanszék)

1. A tantárgy célkitűzése
Kötelező alaptárgy a mérnök- és gazdasági képzésekben.

2. A tantárgy tematikája

Fizika 1
(TE11AX01, 2. szemeszter, 3/1/0/v/5 kredit, Fizika Tanszék)

1. A tantárgy célkitűzése
A tantárgy célja a középiskolában megszerzett ismeretek rendszerezése, kiegészítése. A korszerű természettudományos világszemlélet kialakítása és a modellalkotási készség fejlesztése. Olyan egyetemi szintű fizikai ismeretek elsajátítása amely feltétlenül szükséges a szaktárgyak megalapozásához valamint elengedhetetlen a XXI. századi technika világában eligazodni és alkotni akaró mérnök munkájához.

2. A tantárgy tematikája
GYAKORLAT(HETI 1 óra) Kiscsoportos (tanköri) foglalkozás. Témája az előadáson elhangzott tananyagnak feladatmegoldásokon keresztüli megértés és elmélyítése. A gyakorlatokon a Tankönyvben lévő kidolgozott "Példák" és kiválasztott "Feladatok" szerepelnek. Egyéni, önálló gyakorlásra a tankönyvből feladatokat jelölünk ki.
Fizika 2
(TE11AX02, 3. szemestzer, 3/1/0/v/5 kredit, Fizika Tanszék)

1. A tantárgy célkitűzése
A tantárgy célja a középiskolában megszerzett ismeretek rendszerezése, kiegészítése. A korszerű természettudományos világszemlélet kialakítása és a modellalkotási készség fejlesztése. Olyan egyetemi szintű fizikai ismeretek elsajátítása amely feltétlenül szükséges a szaktárgyak megalapozásához valamint elengedhetetlen a XXI. századi technika világában eligazodni és alkotni akaró mérnök munkájához.

2. A tantárgy tematikája

A számítástudomány alapjai
(VISZA105, 1. szemestzer, 4/2/0/v/6 kredit, SZIT)

1. A tantárgy célkitűzése
A villamosmérnöki tanulmányokhoz szükséges legfontosabb matematikai ismeretek elsajátítása, az algebra és diszkrét matematika szemléletmódjának kialakítása.

2. A tantárgy tematikája
A) Kombinatorikai alapfogalmak, leszámolások.
B) Fejezetek a gráfelméletből
 1) Gráfméleti alapfogalmak, út, kör, fa, irányított gráfok
 2) Síkbarajzolhatóság, dualitás, gyenge izomorfia
 3) Euler- és Hamilton-körök; színezések
 4) Párosítások, König tétele, magyar módszer, hálózati folyamok, Menger tételei
 5) Gráfméleti algoritmusok. Legrövidebb út, párosítás, folyam, fakeresés, alapkör rendszer generálása, kritikus út módszerére.
C) Rendezési algoritmusok, adatstruktúrák, számlámléleti algoritmusok, a kriptográfia alapelemei.
E) Számlámléleti algoritmusok, a kriptográfia alapelemei

Anyagtudomány
(GEMTAV01, 1. szemestzer, 3/0/1/v/4 kredit, Anyagtudomány és Technológia Tanszék)

1. A tantárgy célkitűzése
Az anyagok és anyagtulajdonságokra, valamint ezek kapcsolatára vonatkozó alapismeret adása. Ezen belül a villamos és elektronikai ipar legfontosabb anyagairól és ezek konstrukciós és technológiai szempontból történő felhasználhatóságáról ad mérnöki szintű ismeretanyagot, valamint ezek készségszintű alkalmazását segíti elő.
2. A tantárgy tematikája
Bevezetés, az anyagtudomány feladatának áttekintése. Szilárddtestek szerkezete, kristálytani fogalmak, rendszerek, jelölések
Rácszhibák. Mérethatások az anyagstruktúrákban, nano-, mikro-, makroszerkezetek.
Többkomponensű rendszerek szerkezeti formái, polikristályos anyagok. Termikus viselkedés, állapotábrák, termikusan aktivált folyamatok.
A diffúzió jelensége, alapesetek, mechanizmusai. Fázisátalakulások (diffúziós és martenzites átalakulás), hőkezelés, kiválás, amorfizáció, újrakristályosodás, lágyulás, szinterelés.
Károsodási folyamatok, kúszs, elektromos, termikus és mechanikai fáradás, törés, relaxáció, sugárkárosodás, korrózió, páratartalom hatása, migráció.
Szerkezeti anyagok. A szerkezet- és összetétel-vizsgálat módszerei. Mikroszkópia, elektronmikroszkópia, elektronsugaras mikroanalízis, röntgendiffrakció
Szigetelő-, dielektromos és ferroelektromos anyagok, átütési jelenségek. Félvezető egykristályok előállítása, adaléköl, rétegépítő és eltávolító technológiák, vizsgálati technikák (Hall, CV)
Elektronikai kötésechnológiák (forrasztás, mikrohegesztés, termokompresszió), a korszerű kötések anyagai (pl. ólommentes forrasz).
Az elektrotechnika nemfémes alapanyagai (kerámiák, üvegek, polimerek, kompozitok)
Mágneses tulajdonságok, ferro- és ferrimágneses anyagok, mágneses vékonyrétegek, információhordozók. Nanokristályos mágneses anyagok
Intelligens anyagok, alakemlékező ötvözetek, folyadékkristályok, fényvezető szálak

Informatika 1.
(VIII.A202, 3. szemeszter, 3/2/0/v/5 kredit, IIT)

1. A tantárgy célkitűzése
Átfogó ismeretek nyújtása és szakmai alapozás a szakirányok számára a számítógépek felépítése, működése, számítógép-architektúrák, operációs rendszerek funkciói, belső szerkezete, működési elvei területén.
A tantárgy által nyújtott ismeretek birtokában a hallgatók képessé válnak konkrét számítógép-rendszerek és operációs rendszerek dokumentációinak gyors megértésére, üzemeltetési, konfigurálási, karbantartási feladatok gyors megtanulására.

2. A tantárgy tematikája
Számítógép architektúrák:
Bevezetés, építőelemekek és összekapcsolási lehetőségek,
CPU-k jellemzése, szoftver modell, teljesítménynyomvölék,
Memóriaszervezés, tárkezelés,
Többfelhasználós operációs rendszerek támogatása,
I386 mikroprocesszor főbb jellemzői,
I/O kezelés, perifériák,
Többprocesszoros rendszerek, laza és szoros csatolás,
Sín kialakítás elve, modularizáció,
Sínvezérlés, vezérlésátadás,
Első és második generációs sínek.
Operációs rendszerek:
Bevezetés, történeti áttekintés,
Multiprogramozás, processzek,
Folyamatokból álló rendszerek,
Holtponthelyzetek,
CPU ütemezés,
Társversezés, virtuális tárkezelés,
Fájlkezelés, I/O rendszer
Esettanulmányok.

Informatika 2.
(VIAUA203, 4. szemeszter, 3/2/0/v/5 kredit, AAIT)

1. A tantárgy célkitűzése
Átfogó ismeretek nyújtása és szemlélet kialakítása az alábbi területen: számítógép hálózatok, adatbáziskezelés, programozás-elmélet, számítástudomány, valamint az elméletben tanultak alátámasztására és bemutatására gyakorlati és technológiai ismeretek nyújtása számítógéphálózatok és adatbáziskezelés témaköréből.
Az Informatika 2. tantárgyban folyó képzés elsődleges célja a hallgatók megismertetése a számítógépes hálózatok, az adatbázis kezelés és a formális nyelvek legfontosabb ismereteivel, ami a későbbiekben hasznosan segítheti a továbbhaladásukat valamint a villamosmérnöki tevékenységüket.
A megszerzett elméleti és gyakorlati ismeretekkel a hallgatók képesek kell legyenek
• egyszerűbb hálózati rendszerek kezelésére, elemzésére, az itt felmerülő problémák kezelésére,
• egyszerűbb adatbázisok tervezésére, használatára,
• egyszerűbb ember-számítógép valamint számítógép-számítógép kapcsolatok szisztematikus definíálására és megvalósítására.
A kitűzött célok megvalósulása érdekében a hallgatók a képzés során a számítógépes laborban *komplex feladatokat* oldanak meg.
A képzési célok teljesíthetősége olyan tananyagot és infrastruktúrát feltételez, amely – a felkészülést is segítő rendelkezésre állással - rendszerezett gyakorlati ismeretek megszerzését teszi lehetővé a hallgatók számára.

2. A tantárgy tematikája
ELŐADÁS
1. Számítógép-hálózatok
A számítógép-hálózatok osztályozása, hálózati topológiák, struktúrák, architektúrák. Alapfogalmak. Az OSI modell és a TCP/IP modell rétegei.
Vezetékes és vezeték nélküli átvitel.
Közeghozzáférési protokollok. A CSMA/CD, az IEEE 802.3 ethernet, a vezérjeles sin és a vezérjeles gyűrű protokolljai.

2. Adatbáziskezelés

Relációs adatbázis tervezés. A funkcionális függőség fogalma. 0, 1, 2, 3, BCNF normál formák. Többértékű függőség.

Komplex lekérdezések. Join és alkalmazásai, beágyazott lekérdések, uniónok. DML és DDL utasítások.

Nézet fogalma és használata.

Tranzakció fogalma és tranzakció kezelés. Adatkonzisztencia formái és biztosítása.

3. A fordítóprogramok alapjai

LL(k) nyelvek fogalma és elemzése. LL(k) elemző automatajai.

Fordítóprogramok felépítése és működése. Esettanulmány magas szintű nyelv elemeinek specifikálására és elemzésére (lexikális és szintaktikus elemző felépítésére).

4. Számítógépes gyakorlatok anyaga

1. Egyszerű TCP/IP szerver implementációja. Egy telnet szerver készítése

2. Alapszintű hálózati protokollok vizsgálata (Internetwork layer, IP, ARP, ICMP) Hálózati forgalom megfigyelése (tcpdump), ICMP csomagok vizsgálatára ping és traceroute implementációja

5. SQL utasítások (főleg DML) gyakorlása, egyszerű és összetett lekérdések készítése, táblák összekapcsolása, csoportfüggvények használata.

6. Tranzakció kezelés, tranzakciók kezdeté és vége, tranzakciók izolációja, zárolás, holtpont kezelése.

7. YACC, LEX alapú környezetben egyszerűbb ember-gép kapcsolat implementálása.
III.2 Gazdasági és humán ismeretek

A gazdasági és humán ismeretek tantárgyblokk két részből tevődik össze: 3 kötelező tantárgyból (Mikro- és makroökonómia, Menedzsment és vállalkozásgazdaságtan, Üzleti jog) és a hallgatók által kötelezően választható tantárgylista további 5 x 2/0/0/2 kiméréretű tantárgyából.

Mind a BSc, mind az MSc képzésben szerepelnek kötelezően választható tantárgyak a gazdasági és humán ismeretek témakörében. A két tantárgylista különböző tantárgyakat tartalmaz, a hallgatók csak a saját képzési formájuknak megfelelő listából választhatnak.

A hallgatók kötelezően felveendő a következő gazdasági és humán ismeretek tantárgyak közül választhatnak:

- BMEGT35A001 Pénzügyek
- BMEGT20V100 Innovatív vállalkozások indítása és működtetése
- BMEGT35A003 Gazdaságpolitika
- BMEGT42A001 Környezetgazdaságtan
- BMEGT52A013 Szociális készségfejlesztés
- BMEGT35A002 Számvitel
- BMEVITMAK47 Mérnöki menedzsment módszerek
- BMEGT20A002 Marketing
- BMEGT52A002 Pszichológia
- BMEGT52A001 Ergonómia
- BMEGT43A002 Szociológia
- BMEVIEAK49 Adatvédelem és információszabadság
- BMEVIVEAK48 Mérnöki problémamegoldás
- BMEVITMAK48 Érzelmek logikája
- BMEVITMAK49 Digitális életmód

A BMEGT… kódú tantárgyak tematikái a GTK honlapján találhatók meg.
Mikro- és makroökonómia

(GT30A001, 1. szemeszter, 4/0/0/v/4 kredit, Közgazdaságtan Tanszék)

1. A tantárgy célkitűzése
Olyan közgazdasági ismeretek nyújtása, melyek segítségével a hallgatók eligazodnak a gazdasági környezet mikro- és makroszfárájának aktuális kérdéseihez, megértik azt, hogy a folyamatos műszaki fejlesztés és innovatív tudás az alapja annak, hogy olyan termékek és eljárások szülessenek, amelyek nemcsak hazai, hanem nemzetközi szinten is jövedelmesek az egyén, a vállalat és az ország számára. Ha értik a gazdasági folyamatok és főbb összefüggések lényegét, akkor saját maguk is tudják „értelmesi módon” kedvezően befolyásolni saját környezetüket, és elősegíthetik a gazdaság fejlődését rövid és hosszú távon.

2. A tantárgy tematikája
5. A termelési tényezők piaca: beruházási, befektetési döntések optimuma.
6. Az állam szerepe a gazdaságban.
7. Nemzetgazdasági teljesítmények mérése: GO, GDP, GNP, GNI, GNDI.
9. Pénz szerepe a makrogazdaságban, a modern pénzügyi rendszer működése, a monetáris politika eszközei, a pénzforgalom szabályozása.
10. A kormányzat fiskális politikája és eszközei, a költségvetési kiadások hatása a makrogazdasági egyensúlyra.
11. Árupiac és pénzpiac makroszintű összekapcsolása: az IS-LM modell.

Menedzsment és vállalkozásgazdaságtan

(GT20A001, 2. szemeszter, 4/0/0/f/4 kredit, Menedzsment és Vállalatgazdaságtan Tanszék)

1. A tantárgy célkitűzése
A tantárgy oktatásának célja, hogy megismertesse a hallgatókat a szervezetek és a menedzsment feladatának és működésének alapelveivel. A tantárgy keretében röviden bemutatjuk a gazdálkodás- és szervezéstudomány legfontosabb részterületeit és aktuális problémáit. Ezt követően a vállalkozásgazdaságban alapjaival foglalkozunk és az alábbi fő témákra kerülünk.

2. A tantárgy tematikája
- Vállalkozásgazdaságtan közgazdasági háttere: érték, hasznosság, profit, alternatív költség kockázat fogalma, értelmezése
- Vállalkozásgazdaságtan elemzési alapjai: pénzarámlások meghatározása, tőkeköltség, fő gazdasági mutatók, elemzések
- Menedzsment alapok: a vállalat alapvető erőforrásai és folyamatok; a vállalat, mint szervezet; funkciók és menedzseri szerepek; a csoportmunka jelentősége és eredményei; kommunikáció a szervezetben; vállalatirányítási rendszerek; a termék fogalma, életciklus;
(TQM) alapelveinek összefoglalása; a folyamatos javítás elve és módszerei;
- Termelésgazdaságtan: a termelőrendszer definíciója, fejlődése; a termelő- és szolgáltatórendszerek osztályozása; a készletek szerepe a termelésben, készletekkel kapcsolatos költségek; egyszerű készletgazdálkodási rendszerek;
Költséggazdálkodási rendszerek: költségszámitási rendszerek fejlődése, szintjei; költségek csoportosítási módjai; Tradicionális költségszámitási modellek; ár-költség-nyereség-fedezet struktúra (ÁKFN modell); standardköltség-számitás; tevékenységalapú költségszámitás (ABC). Kihasználhatlan kapacitás költsége;

Üzleti jog
(GT55A001, 3. szemeszter, 2/0/0/2 kredit, Üzleti Jog Tanszék)

1. A tantárgy célkitűzése
A villamosmérnök és mérnök informatikus hallgatók a félév során áttekintést/alapismereteket szerezzenek a magyar jogrendszer működéséről – az üzleti élet alapvető jogi területeiről és azok összefüggéseiről. A tantárgy hangsúlyosan tárgyalja a társasági jog és érintkező területeinek (versenyjog, fizetésképtelenség joga) valamint a kötelmi jog (különösen a gazdasági szerződések jogának) szabályozását

2. A tantárgy tematikája
Jogi- és államtani alapvetés (A jog fogalma, – Jogviszonytan – a Jogalkalmazás rendszere)
Államtani alapvetés (Államfogalom – államszervezet)
Kötelmi jogi alapot, alapvetés; Szabályozási környezet – a kötelem és a szerződés fogalma, a szerződéskötés folyamata; Szerződésmódosítása; Szerződések megszűnése; Szerződések tipizálása
Szerződésszegés - Érvénytelenség-hatálytalanság – Szerződést biztosító mellékkötelezettségek
Egyes gazdasági szerződéštípusok – tipikus és atipikus szerződések - adási és megbízási kötelmek eredménykötelmek, vállalkozási szerződés, fuvarozás és szállítmányozás, a gazdasági forgalom egyéb szerződései
Társasági- és cégi jogi alapot: a szervezeti jogalany fogalma, a gazdasági társaság fogalma, a hatályos társasági jog rendszere
A gazdasági társaságok létszakai és szervezete
A jogi személyiség nélküli kistársaságok, a közkereseti- és a betéti társaság
A jogi személy társasági formák; a korlátolt felelősségű társaság és a részvénytársaság
A társasági jog kapcsolódó jogterületei; Fizetésképtelenségi jog – csőd- és felszámolás
Versenyjog – tisztességtelen verseny elleni szabályok és a versenykorlátozások tilalma
III.3 Szakmai törzsanyag

A programozás alapjai 1.
(VIHIA106, 1 szemeszter, 2/1/1/5 kredit, HIT)

1. A tantárgy célkitűzése
A tantárgy célkitűzése, hogy hallgatók megfelelő jártasságot szerezzenek a számítógépes problémamegoldás módszereinek és alapvető eszközeinek használatában annak érdekében, hogy a megszerzett ismereteket és készségeket további tanulmányaik során hatékonyan legyenek képesek alkalmazni. A célkitűzés teljesítését a C programozási nyelv megismerése teszi lehetővé. A gyakorlatok és laborok anyaga folyamatosan követi az előadások tematikáját, azok megértését, elmélyítését támogatja.

2. A tantárgy tematikája

 Gyakorlat: Hétköznapi algoritmusok, folyamatábrás, rajz készítése, algoritmusok lejátszása. A HSZK használata.

 Gyakorlat: Vezérlési szerkezetek (ciklusok, elágazás), beépített függvények. Egyszerű számelméleti algoritmusok, kiírás, egyes beépített matematikai függvények.

 Gyakorlat: Összetettebb algoritmusok kódolása, beolvasás, egyszerű tömbkezelés. Beolvasás tömbbe; elemek megváltoztatása, kiírás, indexelés, túlindexelés.

 Gyakorlat: Függvények kódolása, egyszerű matematikai jellegű függvények. Összetettebb problémák dekompozíciója.

aritmetika. Sztring mint karaktertömb, sztring mint végjeles sorozat. Sztringkezelés beépített függvényekkel.

Gyakorlat: Függvények és pointerek, cím szerinti paraméterátadás, struktúra mint paraméter. Tömb átadása függvények

Alapvető rendező algoritmusok.
Gyakorlat: Sztringkezelés saját függvényekkel, beépített sztringkezelő függvények. A tesztelés folyamatának demonstrálása.

Gyakorlat: Fájlkezelés, parancsori argumentumok. Tömbkezelés, rendezés, többedmenzis tömbök gyakorlása, függvények írása.

Lista változatai, lifo, fifo, fésüs lista. Többszörös indirekció fogalma.
Gyakorlat: Dinamikus memória kezelés. Dinamikus tömbök, dinamikusan foglalt struktúrak.

Gyakorlat: Listák kezelése, implementálása, felépítése fájlból.

Gyakorlat: Házi feladat beszedés, gyakorlás.

A programozás alapjai 2.
(VIAUA116, 2. szemeszter, 2/0/2/4 kredit, AAIT)

1. A tantárgy célkitűzése
A tantárgy alapvető célja, hogy alapozó tantárgyként folytassa számítógépes problémamegoldás módszereinek és alapvető eszközeinek előző félévben megkezdett megismertetését olyan szinten, hogy azt a hallgatók további tanulmányaik során képesek legyenek hatékonyan alkalmazni. Ezért félév alapvető
célkitűzése, hogy további gyakorlatokkal mélyítse a C programozási nyelv ismeretét, megismertesse a nagyméretű programozási feladatok megoldásának lépéseit, és bevezessen az objektum-orientált programozásba. Célkitűzését a tantárgy az előző félévben megszerzett C nyelvi tudásra alapozva, a C++ nyelv megismertetésével éri el. A laborok anyaga folyamatosan követi az előadások tematikáját, azok megértését, elmélyítését támogatja.

2. A tantárgy tematikája

C++ mint a C javított változata

Objektum-orientált programozás alapjai a C++ nyelv bemutatásával
Objektum-orientált programozás alapfogalmai, elvei, objektum fogalma. Osztály, egységbezárás, láthatóság és információrejtés fogalma. Tagváltozók és tagfüggvények. A this pointer.

Az örökös szerepe az objektumorientált programozásban. Özökös, származatott osztály, alaposztály. Az örökös hatása a láthatóságra. Konstruktorok és az örökös.

Többszörős örökös, virtuális alaposztályok. Konstruktorok és destruktorok automatikus feladatai.

Tipuskonverziók. C++ konverziós operátorok.

Kivételkezelés.

Generikus adatszerkezetek jelentősége. Függvény- és osztályasblonok.

Digitális technika 1.

(VIIIA105, 1 szemeszter, 3/1/1/v/6 kredit, IIT)

1. A tantárgy célkitűzése

A tárgy rendeltetése, hogy megadj a hardware rendszertechnikai alapismereteket, amelyek a digitális berendezések logikai tervezési szintjén szükségesek. A tervezői szemlélet kialakítása érdekében a hallgatók a gyakorlati foglalkozásokon logikai tervezési részfeladatok önálló megoldásával mélyítik el az elméleti tananyagot. Ennek keretében

- megismerik a digitális integrált áramköri építőelemek főbb típusait felhasználói szinten,
- elsajátítják és begyakorolják a kombinációs és sorrendi hálózatok tervezési lépéseit,
- gyakorlatot szereznek a hazárdjelenségek felismerésében és kiküszöbölésében,
- módszereket ismernek meg és gyakorlatot szereznek a mikroprocesszoros rendszerek analízisében és szintezésében,
- egy mikroprocesszoros eszközbázis és egy assembly nyelv alapszintű megismerése révén olyan alapokat kapnak, amelyek birtokában további mikroprocesszor rendszerek megismerése és alkalmazása könnyen elsajátítható.

A megszerzett ismeretekkel és készségekkel a hallgatóknak képesek lesznek a villamosmérnöki gyakorlatban felmerülő bármely logikai tervezési feladat megoldására, ennek során
2. A tantárgy tematikája

A kombinációs és a sorrendi logikai rendszerek ill. hálózatok lényege, a működés modellje és az alapvető leképezések tulajdonságai. A kombinációs rendszerek leírása igazságtablával, logikai függvény fogalmának bevezetése, diszjunktív és konjunktív normálalakok felírása az igazságtábla alapján.

Többszintű kombinációs hálózatok tervezésének alapjai.

A szinkron sorrendi hálózatok tervezésének alapjai. Az állapotkódolási módszerek és az állapotok kiküszöbölése céljából.

Az állapotkódolási módszerek és az állapotok kiküszöbölése céljából.
alapján a minimális számú állapottal rendelkező összevont állapot tábla képzése. Állapotösszevonási eljárás nem teljesen határozott állapot tábla esetén. Az állapotkompatibilitás tulajdonságai. A maximális kompatibilitási osztályok alapján az optimális zárt lefedés keresése. A minimális számú állapottal rendelkező összevont állapot tábla szisztematikus meghatározhatóságának elvi akadályai. A sorrendi hallózatok analízisének lépései, a szinskron flip-flopként való értelmezhetőség vizsgálata.

Aszinkron sorrendi hálózatok állapockódolási módszereinek bemutatása és gyakorlása (instabil állapotok módosítása, átvetezett állapotok beiktatása).

A laboratóriumi mérések tematikája:

1. mérés. - Kombinációs hálózatok vizsgálata.
 Egy megvalósított kombinációs hálózat igazságtáblázatának meghatározása.
 Kombinációs hálózat tervezése és megépítése szöveges specifikáció alapján.
 Kombinációs hálózatok hazárdjelenségeinek demonstrálása.

2. mérés. - Sorrendi hálózatok vizsgálata 1.
 Mealy és Moore modell szerint megvalósított sorrendi hálózat működésének vizsgálata.
 Flip-flop megvalósítása másik flip-flop mint építőelem felhasználásával.

3. mérés. - Sorrendi hálózatok vizsgálata 2.
 Kritikus versenyhelyzet és lényeges hazárd vizsgálata megvalósított aszinkron sorrendi hálózaton.
 Órajel elcsúszás vizsgálata megvalósított szinskron sorrendi hálózaton.
 Egyszerű szinskron sorrendi hálózat tervezése és megvalósítása.

Digitális technika 2.
(VIIIA106, 2. szemeszter, 4/1/0/v/6 kredit, IIT)

1. A tantárgy célkitűzése
A tárgy rendeltetése, hogy megadja mindazokat a hardware rendszerteknai alapismereteket, amelyek a digitális berendezések logikai tervezési szintjén szükségesek. A tervezői szemlélet kialakítása érdekében a hallgatók a gyakorlati foglalkozásokon logikai tervezési részfeladatok önálló megoldásával mélyítik el az elméleti tananyagot. Ennek keretében

- megismerik a digitális integrált áramköri építőelemek főbb típusait felhasználói szinten,
- elsajátítják és begyakorolják a kombinációs és sorrendi hálózatok tervezési lépéseit,
- gyakorlatot szereznek a hazárdjelenségek felismerésében és kiküszöbölésében,
- módszereket ismernek meg és gyakorlatot szereznek a mikroprocesszoros rendszerek analízisében és szintézisében,
- egy mikroprocesszoros eszközbázis és egy assembly nyelv alapszintű megismerése révén olyan alapokat kapnak, amelyek birtokában további mikroprocesszor rendszerek megismerése és alkalmazása könnyen elsajátítható.

A megszerzett ismeretekkel és képességekkel a hallgatóknak képesek lesznek a villamsmérnöki gyakorlatban felmerülő bármely logikai tervezési feladat megoldására, ennek során

- a rendszerteknai terv kidolgozására,
• a megfelelő építőelem-készlet kiválasztására,
• a logikai tervezési feladat megfogalmazására,
• a logikai tervezési lépések számítógépes végrehajtására,
• adott számítógépes tervező rendszer (CAD) használatára.

2. A tantárgy tematikája

Léptetőregiszterek és latch áramkörök.
Funkcionális áramkörök tervezése MSI áramkörök felhasználásával. Számlálók megvalósítása sorrendi hálózattal, illetve a szinkron és aszinkron működési elvű számlálók.
BCD számláló, mint a számlálási ciklus rövidítése. Kimeneti tranziensek bináris számlálók kimenetén.

Haázardmentes számlálók.

ALU megvalósítása összegző felhasználásával. BCD számok összeadása. Lebegőpontós számbázolás és a lebegőpontos aritmetikai egység.

Vezérlőegységek tervezésének alapjai.

Memória-áramkörök: írható és olvasható memóriák. Statikus RAM felépítése.

Statikus és dinamikus RAM memóriák. ROM jellegű memóriák.

Alkalmazás-specifikus (ASIC) áramkörök, fontosabb csoportok. Memória, PLA és FPGA építőelemek felépítése és alkalmazásuk módszerei kombinációs és sorrendi feladatok megoldására. FPGA áramkörök.

RAM bázisú FPGA áramkör felépítése, erőforrásai, konfigurálása.

A mikroszámítógépek általános felépítése, blokkvázlata, a funkcionális egységek jellemzői, a működés modellje. Egy egyszerű mikroprocesszor sínrendszerének felépítése. Alaphelyzetbe állítás, órajel generálás, READY kezelés.

Memóriák illesztése sínrendszerekhez. ROM, RAM memória elemek. Időzítési viszonyok a memóriák szempontjából. Az adatszélesség növekedése.

Sínrendszerek szubrutin felépítése, automatikus és programozható megszakítások. Speciális utasítások.

1. A tantárgy célkitűzése
A két féléves Jelek és rendszerek 1-2. tantárgy feladata az alapvető jel- és rendszerelméleti fogalmak ill. számítási eljárások megadása, valamint a rendszert reprezentáló villamos és jelfolyam hálózatok analízisére alkalmazható módszerek megismertetése. A tantárgy első részében az időtartományban alkalmazott rendszerleírásokat tárgyaljuk, és ezt követően foglalkozunk a frekvenciaturmányi leírással. Példákban és alkalmazásokban a Kirchhoff-tipusú (villamos) hálózatokkal reprezentált rendszereket és leíró egyenleteket ill. ezek megoldását tárgyaljuk, és gyakoroltatjuk. A tantárgy követelményeit sikeresen teljesítő hallgatók alkalmazni képesek a legfontosabb rendszer- és hálózatanalízis módszereket az idő- és a frekvenciaturmányban, szinuszos és periodikus gerjesztés esetén.

2. A tantárgy tematikája
1. A tantárgy célkitűzése

A tantárgy a Jelek és rendszerek 1 tantárgy folytatása. Célja megalapozni a folytonos idejű rendszerek vizsgálati módszereit a frekvencia és a komplex frekvencia tartományban, továbbá a különböző rendszerleírások alapján megismertetni a rendszerjellemzőket és kapcsolatukat. A folytonos idejű rendszerek elmeletét követően, a diszkrét idejű jellek és rendszerek vizsgálati módszereinek tárgyalása az idő-, frekvencia-, és z-tartományban. A tantárgy megadja a folytonos idejű jellek és rendszerek diszkrét közelítésének elvi alapjait, és tárgyalja a folytonos idejű nemlineáris rendszerek és hálózatok analízisének alapvető módszereit.

A tantárgy követelményeit sikeresen teljesítő hallgatók felkészültek a folytonos idejű rendszerek legfontosabb számítási módszereinek alkalmazására a frekvencia- és komplex frekvencia tartományban, a diszkrét idejű rendszerek és hálózatok analízisére idő- frekvencia- és z-tartományban. Ismerik a folytonos- és diszkrét idejű jellek és rendszerek kapcsolatát, valamint a moduláció alapelméletét.

2. A tantárgy tematikája

Elektrotechnika
(VIVEA201, szemester, 4/0/1/E/6 kredit, VET)

1. A tantárgy célkitűzése

2. A tantárgy tematikája
A) Az előadások tematikája
Az elektrotechnika alapjai (2 előadás)

Gyakorlati áramkör-számtani technikák és konvenciók (2 előadás)

Villamosenergia-átalakítók gyakorlati számítási módszerei (2 előadás)

A transzformátorok működése (3 előadás)

Az elektromechanikai átalakítók mágneses tere (2 előadás)

Az alapvető elektromechanikai átalakítók működési elvei (5 előadás)
felépítése és működési elve. Az elektronikus kommunikáció elve. Mozgásszabályozásokban használt villamos gépek (állandó mágneses forgófejlődés).

Teljesítményelektronikai és villamos hajtástéchnikai alapok (3 előadás)
Teljesítményelektronikai alapok: egy- és háromfázisú konverteres és inverteres kapcsolások analízise. Villamos hajtások alapjai; indítás, feszültség, fordulatszám változtatás.

Számtógéppel segített szimuláció az elektrotechnikában (2 előadás)
Új villamosipari termékek tervezésének elvei és módszerei. Villamos áramköreik, gépek és teljesítményelektronikai egységek működését simuláló programok alkalmazása gyakorlati elektrotechnikai problémák megoldására. Példamegoldás.

Elektrotechnikai környezetvédelem (1 előadás)
Az elektromágneses összeférhetőség (EMC) alapjai. Kis- és nagyfrekvenciás hatások, elektrosztatikus kisülés, elektromágneses impulzusok. Élettani hatások. A technikai és természetes környezet kölcsönhatásai.

Villamos biztonságtechnika és érintésvédelem (2 előadás)
Az érintésvédelem alapjai. Érintésvédelmi módszerek. A határértékek előírásrendszere. Érintésvédelmi rendszerek alapjainak bemutatása. Érintésvédelmi mérések.

A villamos energia tárolásának lehetőségei (1 előadás)
Kémiai, villamos, mágneses és mechanikai energiatárolási lehetőségek, alkalmazási példák. Tüzelőanyag-cellák működési elve, fajtái, tulajdonságai; tüzelőanyag-cellás rendszerek felépítése és alkalmazási területei.

Elektrotechnikai alkalmazások és fejlődési trendek (2 előadás)

B) A laboratóriumi gyakorlatok tematikája

Védőtávolságok nagyfeszültségű rendszerekben

Érintésvédelem

Mágneses jelenségek, a transzformátor működése

Villamos forgógépek működési elvei

Nemkonvencionális energiaátalakítók

Elektromágneses terek alapjai

(VIHVA201, 4. szemeszter, 3/1/0/v/5 kredit, HVT)

1. A tantárgy célkitűzése
A tárgy elsődleges célkitűzése, hogy a villamosmérnökök hallgatókkal megismertesse az elektromágneses térral kapcsolatos alapfogalmakat és matematikai összefüggéseket. Célja továbbá a fontosabb térszámítási módszerek bemutatása, néhány egyszerűen tárgyalt feladattípus megoldása, a megoldások szemléltetése, értelmezése és alkalmazási területeik áttekintése. Egyszersmind megalapozza az MSc képzésben inditott Elektromágneses terek tárgyat.

2. A tantárgy tematikája

Bevezető, alapmennyiségek, alapösszefüggések

- Az elektromágneses tér forrásai (töltés/töltéssűrűség, áram/áramsűrűség). Az elektromágneses teret leíró vektormezők: intenzitásvetők (elektromos térerősség, mágneses indukció), gerjesztett vektorok (mágneses térerősség, elektromos eltolás), integrált mennyiségek (elektromotoros erő/feszültség, magnetomotoros erő/gerjesztés, elektromos és mágneses fluxus). Elektromágneses tér és közege kölcsönhatása (polarizáció, mágneszettség), a térvektorok
kapcsolata, illetve az anyag elektromágneses paraméterei (permittivitás, permeabilitás, konduktivitás).

Elektrosztatika

Stacionárius és kvázistacionárius folyamatok

- A stacionárius áramlás alapegyenletei, elektrosztatikai analógia. Az ellenállás fogalma.
- Koncentrált paraméterű villamos hálózatok, Kirchhoff-egyenletek.

Távvezetékek

- Lezárt távvezeték (peremfeltételek), Reflexiós tényező. Hullámkép speciális lezárások esetén (illesztett, rövidre zárt, stb.). Tetszőleges lezárás, állóhullámáramány.
- A távvezetékek mint kétkapu. Bemeneti impedancia.

Elektromágneses hullámok

- Gerjesztett hullámok. A Hertz-dipolus tere (levezetés nélkül), közel- és távoltér, sikcsoportosú-közélítés, teljesítményarcsaság.

Elektronika I.

(VIHIA205, 4. szemeszter, 3/2/0/v/6 kredit, HIT)

1. A tantárgy célkitűzése

A mai elektronika és informatika igen összetett nagybonyolultságú áramkörekre épül. Ezek felépítését és alapvető működési elvét minden villamosmérnöknek ismerni kell. A bonyolult rendszerek áttekintéséhez el kell sajátítani azokat az elemi tervezési és méretezési elveket, amelyek alapján az összetett áramkörök és elektronikus berendezések létrehozhatók.

Az Elektronika I. tantárgy feladata a fent vázolt ismeretek közlese. A tantárgy különleges hangsúlyt helyez a kapcsolódó gyakorlati ismeretekre. Elemi számítási és méretezési módszerek gyakorlata, kész megoldások analízise szolgálja ezt a célt.

A két féléves tantárgy feladata az elektronikai áramkörökre vonatkozó alapismeretek megadása. Közelebbről a tantárgy első félévében ez: az elektronikai alkatrészek és aktiv eszközök működésének, elektromos jellemzőinek fenomenológiai ismertetése, az analóg és digitális alapáramkörök felépítésének,
működésének megismertetése, összetettebb elektronikai egységek (mint pl. műveleti erősítők, A/D és D/A konverterek, stb.) felépítésének, működésének, tulajdonságai számításának a bemutatása.

A tantárgy jártasságot ad az elektronikus alkatrészek és aktív eszközök fenomenológiai ismertetése: Az elektronikus eszközök működésének leírása, alapvető karakterisztikák. Az elektronikus eszközök típusai (passzív és vezérelhető eszközök). A vezérelhető eszközök fogyalma és típusai, a karakterisztikák osztályozása (bemeneti és transzfer karakterisztikák), a karakterisztikák tiltott tartományai, a karakterisztikák közelítő analízis leírása. Alapvető nagyjelű és kisjelű eszközmödellje (dióda, bipoláris és térvezérlésű tranzisztorok, egyéb például optikai eszközök).

Az előadótermi gyakorlatok az elméleti anyaghoz közvetlenül csatlakozó számítási feladatok megoldásában adnak jártasságot. A gyakorlatok válaszai tematikája:
1. A tantárgy célkitűzése
A tantárgy alapot teremt az összetettebb elektronikus rendszerek rendszerbeli funkciójának, működésének és áramköri felépítésének megismeréséhez, és foglalkozik az ilyen áramkörök, valamint összetettebb egységek számítási módjával és tervezésük alapvető kérdéseivel.
A tantárgy megfelelő bázist nyújt az adott területen ahhoz, hogy a későbbi, specializálódó képzés tantárgyai az elektronikai alapfogalmak és módszerek biztos ismeretére támaszkodhassanak.

2. A tantárgy tematikája
I. Jelformáló áramkörök
I.1 Nemlineáris jelformáló áramkörök
- Nemlineáris alapáramkörök
Egyenirányítók, vágó és szintbeállító áramkörök, töréspontos karakterisztikájú áramkörök. Logaritmikus és exponenciális erősítők.
- A szorzó áramkörök és alkalmazásaik
A tranzisztoros szorzó áramkör felépítése és működése. A szorzó áramkör alkalmazása keverésre és frekvenciatranszponálásra.
I.2 A modulált jelátvitel alapáramköréi
- Az analóg moduláció alapjai
A modulátorok és demodulátorok rendszertechnikai feladatai. AM és FM modulátorok és demodulátorok. Az órajel előállításának módszerei, a jitter fogaalma.
- A szinkronizáció áramköréi
A fáziszárt hurok felépítése, elvi működése és alkalmazása. A fáziszárt hurok felépítése, alapsávi modellje, a kisjelű helyettesítő kép. A fáziszárt hurok osztályozása, a lineáris modell analízise.
I.3 Szelektív elektronikus áramkörök
- A szelektív áramkörökkel kapcsolatos alapfogalmak.
A szelektív áramkörök szerepe az elektronikus rendszerekben. A Szelektív áramkörök specifikációja, approximációja, toleranciasémája, a tipikusan alkalmazott transzformációk.
- A szelektív áramkörök megvalósítása aktív és speciális eszközökkel.
II. Az energia-átalakító technika alapjai
- A teljesítményelektronika speciális félvezetői, (tirisztor, triac, GTO, IGBT).
- Az AC/DC átalakítók, => hálózati kommutációs áramirányító kapcsolások => vezérelt és vezéreltlen kapcsolások. 1F megoldások, 1F1U1U, 1F1U2U és 1F2U2U kapcsolások kapacitív és induktív szűréssel. Energiavisszatáplálás, (inverter üzem), 1/4-es, 2/4-es és 4/4-es megoldások. Az ütemszám növelésének módjai,
- Az AC/ AC átalakítók, változóáramú szaggatókapcsolások. 1 F megoldások. Felépítés, vezérlési módok, alkalmazások. (Ohmos ellenállás és induktívitás áramának szabályozása, kondenzátor kapcsolása, meddőkompenzáció, motorok fördulatszámcsökkentése).
- A DC/DC átalakítók. Folyamatos működésű megoldások, Zener diódás, soros áttervezett tranzisztoros feszültségszabályízótároló, a kimenő áram korlátozása, integrált áramkörös vezérlés. Kapcsolóüzemű megoldások, buck, (feszültségcsökkentő), boost, (feszültségnövelő) és buck-boost, (polaritásváltó) kapcsolás, integrált áramkörös vezérlés,
- A DC/ AC átalakítók. 1F hidakapcsolású és középpontmegcsapolású transzformátoros megoldás, passzív terheléssel. A kimenő feszültség szabályozása és szűrő, (PWM és SPWM).
III. Véges méretű áramkörök
III.1 Az elosztott paraméteres áramkörök problémái.
A frekvenciatartományok felosztása. Koncentrálta paraméterű hálózatok, elosztott paraméteres hálózatok, végű méretű struktúrák.
- Tápfonalak típusai és jellemzőik.
- A távíró egyenlet, megoldása az időtartományban, a lezárások hatása, vándorhullámok kialakulása, a Bergeron szerkesztés.
- A távíró egyenlet, megoldása a frekvenciatartományban, az állóhullámok kialakulása.
- Keszenysávú, kisinterjú mikrohullámú erősítők tervezése alapjai.
- Tipikus mikrohullámú rezgőkompózit, (magnetron) működésének elemzése.
- Nagyterületű impulzustechnikai áramkörök, Marx generátor, Vircator cső, fluxuskompressziós generátorok.
- **Kitekintő jelleggel:** elosztott áramkörök mikroelektronikai megvalósítása, integrált nagyfrekvencia áramkörök. Az optikai tartományú adatátvitel és jelfeldolgozás elemei.

IV. Az elektronikus áramkörök termikus problémái
- Konduktív és konvektív hőelvezetés, hőteljesítmények, forszírozott hűtés. A heat pipe használata.
- Berendezések hő-háztartásának tervezése CFD-vel. Mobil berendezések hűtési problémái. (Csak rövid ismertetés)

V. Az elektronikai eszközök zaja
- Az eszközök zajával kapcsolatos alapfogalmak.
- **Az elektronikus rendszerek zaja.**
 Az alapáramkörök zaj tulajdonságainak vizsgálata. A zajtényező fogalma és számítási módja. Több fokozatú erősítő eredő zajtényezője.

Mikroelektronika
(VIEEA306, 5. szemeszter, 3/1/0/f/5 kredit, EET)

1. A tantárgy célkitűzése
A mai elektronika és informatika elképzelhetetlen a nagybonyolultságú integrált áramkörök nélkül. Felépítésükre, a bennük megvalósítható alkatrészekre és áramkörökre vonatkozó alapvető ismeretekkel minden villamosmérnöknek rendelkeznie kell. Ugyancsak ismerniük kell a tervezés leg-elemibb eljárásait – legalább azon a minimál szinten, ami az IC tervező specialistával való együttműködéshez szükséges. Látniuk kell továbbá a hallgatóknak, hogy hogyan kapcsolódik a rendszer szintű tervezés és az igen nagy összetettégű integrált áramkörök tervezése.

A Mikroelektronika tantárgy szervesen kapcsolódik az Elektronika I és II tantárgyakhoz, azokkal egy 3 féléves, összefüggő tematikai vonulatot alkot.
2. A tantárgy tematikája

Digitális alapáramkörök: A CMOS inverter felépítése, tervezése, jellemzői (jelterjedés, fogyasztás, küszöb alatti áram). CMOS kapuk, tároló elemek. Mérétsőkkentés, fogyasztás, a tápfeszültség redukciója.

Kitekintés: Nanoelektronika a monolit technikában. Az IC technika fejlődési trendjei, a roadmap. A tantárgyhoz számítógépes labor gyakorlat (1 óra/hét) tartozik.
A számítógépes labor ismereteket ad a mikroelektronikában alkalmazott gépi tervezési módszerek terén. Az elvégzendő feladatok:
Egyszerű CMOS logikai áramkör áramköri szimulációja.
IC elrendezés illetőleg tok termikus szimulációja
Egy összetettebb (néhány-száz vagy ezer kapu bonyolultságú) integrált áramkör megtervezése (magasszintű nyelvből kiindulva, automatizált módszerekkel).

Méréstechnika
(VIMIA206, 4. szemeszter, 3/2/0/f/5 kredit, MIT)

1. A tantárgy célkitűzése
A tantárgy a környező anyagi világ megismerését, valamint kvantitatív és kvalitatív jellemzését segítő mérnöki módszereket és eszközöket mutat be. Méréselméleti, méréstechnikai, műszertechnikai és metrológiai alapismereteket ad, és szemléletmódjával segíti valamennyi műszaki tantárgy – közöttük a laboratóriumi gyakorlatok - ismereteit. Jelentős mértékben fejleszti a tudatos modellalkotási és problémanegoldó készséget. Mindezt a villamos mennyiségek alapvető mérési módszereinek és eszközeinek megismertetésén keresztül éri el, de támaszkodik az analóg és digitális következetes alkalmazásában rejő lehetőségekre is. A tantárgy a folyamatosan fejlődő méréstechnika nyugalmatlan és folyamatosan felfedeződő mérési módszerek és technikák terén, azzal megpróbálja kialakítani és folyamatosan fejleszteni a hallgatók mértékességét és tudatosságát.

1. A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy:
(1) alkalmazni tudják az alapvető mérési módszereket és ismerjék a megfelelő mérési eljárás kiválasztásának szempontjait,
(2) legyenek tisztában a mérési hibák számításának alapvető szempontjaival, különösen tekintettel a hibakeresés matematikai kezelésére, valamint a mérési bizonytalanság jellemzésére,
(3) ismerjék a leggyakrabban használt jelparaméterek meghatározásának és mérésének módszereit, továbbá a jelenlétesség legalapvetőbb eszközeinek eljárást és felhasználását,
(4) áttekintésük legyen a legalapvetőbb jelvezetési és jelátalakító eszközök felhasználásának és kivitelezésének lehetőségeit,
(5) ismerjék az időtartam és frekvenciamérés eszközeit és módszereit,
(6) ismerjék a villamos alapjellemzők mérésének legfontosabb módjait és módszereit, továbbá az egyes mérőeszközök funkcionális felhasználását és mérési módjait,
(7) ismerjék a mérés során használt jelátalakító eszközök felhasználását és mérési módjait,
(8) tájékozottak legyenek a metrológia és a mérésügy szerepével, továbbá a metrológiai eljárással kapcsolatos tudományos közrangságot.
(9) tudatában legyenek annak, hogy napjainkban - elsősorban információtechnológiai eszközök révén - a méréstechnika mindenütt jelen van,
(10) megszerzett ismereteik birtokában eredményesen teljesítsék a Laboratórium I-II. tantárgyak mérési feladatait.

2. A tantárgy tematikája
1. A méréstechnika alapjai
2. A méréstechnika szerkezete
3. A méréstechnika működése
4. A méréstechnika alkalmazása
5. A méréstechnika szerepe

3. Jelek és jelparaméterek mérése:
Pillanatérték-átlagérték mérése. Periodikus jelek mérése: egyszerű-, abszolút-középérték; csúcsérték; effektív érték; vektormérők; szelektív szintmérők; fázis-érzékeny mérések. A korrelációs méréstechnika alapjai. A spektrumanalizis megvalósításának alapjai: a transzponáló rendszerű és a Fourier (FFT) analizátorok. A számításra gyakorlók témája: (1) jelparaméterek számítása, (2) korreláció és spektrum számítása.

4. A jelvezetés és jelátalakítás méréstechnikai jellemzése:

5. Frekvencia és időmérés:

6. Villamos alapparaméterek mérése:
Áram és feszültség, energia és teljesítmény, elemi impedanciák, valamint két- és többpolosok mérése és eszközei. A fizikai modell (referencia) helye és szerepe a mérési eljárásban. Impedancia modell, a jelvezetés megoldásai: 2-5 vezetékes impedancia mérése. Soros és párhuzamos ohm-mérő, a három voltmérős módszer; null módszer, hidkapcsolások; RLC hidak; a Wagner-féle segédhid; aránytranszformátoros és áramkompártoros hidak; elektronikus hidak; a T kapcsolás. A számításra gyakorló témája: (1) mutató és számjegykijelzésű műszerek pontossága, (2) hibaszámítás hidkapcsolásokban.

7. Jelforrások méréstechnikai jellemzése:

8. A jelanalízis eszközei:

9. Mérőműszerek és méréstechnikai kalibrálása, tesztelés és diagnosztika:
1. A tantárgy célkitűzése
A villamosenergia-rendszerrel kapcsolatos akkor alapismeretek oktatása, amely minden villamosmérnöknek szükséges és egyben megalapozás azok részére, akik a Villamosenergia-rendszerek vagy a Energiátalakító rendszerek szakirányon folytatják a tanulmányaikat.

2. A tantárgy tematikája
A) Az előadások tematikája

1. A villamosenergia szerepe, a villamosenergia-rendszer általános felépítése

2. Szimmetrikus háromfázisú rendszer elemzése

3. Hálózat aszimmetrikus üzem. (4x45p)

4. Hálózati csillapoint földelési módok (2x45p)
A csillapoint földelés módjai és kihatása a földzárlati feszültségemelkedésre, szigetelési szintre és földvisszavezetéses áramokra. A nemzetközi gyakorlat áttekintése.

5. Hálózat üzemvitele. (6x45p)
Hálózatgáz feszültségcsökkenése és teljesítmény viszonyai, terhelhetőség, feszültségsprofil. Feszültség-meddőteljesítmény kapcsolat, feszültségcsökkenése és veszteség csökkentése. Távvezeték természetes teljesítménye.

6. Villamosenergia-rendszerek szabályozása (10x45p)

7. A villamosenergia-szolgáltatás minőségi követelményei. (6x45p)
8. A villamos hálózatok és berendezések villamos és mágneses erôtere. (4x45p)

B) Gyakorlatok témakörei:
(2) Többfeszültségszintû hálózat modellezése viszonylagos egységek segítségével. Fogyasztó ellátása sugaras hálózaton. Feszültségviszonyok elemzése, áramok, teljesítmények számítása. Háromfázisú zárlat.
(4) Feszültségvisesés számítása sugarasan táplált fogyasztó figyelmebetételel. Fázisjavítás. Hálózati veszteség számítása.
(5) Háromfázisú nullavezetôs táplálás kiegyenlített és nem kiegyenlített fogyasztók berendezésénél fázismennyiségekkel és szimmetrikus összetevôk alkalmazásával. Áramok, feszültségek, teljesítmények meghatározása csillagponti nullavezetôvel és anélkül.
(7) Vonali feszültségrôl táplált egyfázisú vasút terhelése, áram- és feszültség aszimmetriája.

C) Laboratóriumi gyakorlatok témakörei:
2. Háromfázisú aszinkron gépek mezőinek vizsgálata.
- Villamos gépek mágneses mezôi: multimédiás bemutató
- A villamos gépek felépítése; gépmodellek bemutatása
- Villamos gépek hálózati visszahatása statikus és dinamikus üzemben
3. Nagyfeszültségû laboratóriumi vizsgálatok és mérések
- Korszerû nagyfeszültségû és nagyáramû mûködszközök
- Elektronlavina, pamatos kisülés, csatorna kisülés
- Szigetelôanyagok átütése és roncsolásmentes vizsgálata, Elektrosztatikus kisülés védelem

Infokommunikáció
(VITMA301, 5. szemeszter, 3/2/0/v/5 kredit, TMIT)

1. A tantárgy célkitûzése
Az „Infokommunikáció” tárgy alapvetô célja, hogy megismertesse a távközlésre és számítógéphálózatokra is kiterjedô infokommunikáció sajátos kérdésfelvetéseit, valamint e kérdések megválaszolásának legfontosabb módszereit és eljárásait.
A tárgy oktatása törekszik arra, hogy késôbb
- a témakron szakirányokon tovább tanulók biztos alapokat kapjanak a leglényegesebb fogalmak és eljárások tekintetében; valamint
- azok a hallgatók, akik más szakirányok valamelyikén folytatják tanulmányait, kellôen megalapozott ismereteikkel rendelkezzenek az új infokommunikáció rendszerek mibenlétezésének megértéséhez.
Ennek megfelelôen a tantárgy minden villamosmérnôk számára nyûjt „kimenô” ismereteket miközben megalapozza a késôbb az infokommunikáció-rokon szakirányok valamelyikét választók további tanulmányait.
Az előadások, a gyakorlatok és a számonkérés együttesen arra törekzik, hogy a hallgatók a megismert elemeket, módszereket és eljáráskat egyrészt alkotó módon tudják alkalmazni, másrészt elegendően sok fix pontot kapjanak ahhoz, hogy a számukra újdonságnak tűnő vagy ténylegesen új infokommunikációs rendszereket és szolgáltatásokat kevés utánjárással megértsék.

2. A tantárgy tematikája

Az infokommunikációs alapjai:
A tantárggyal kapcsolatos információk ismertetése, a témakör elhelyezése az információs és kommunikációs technológiák piaci szereplőinek tevékenységében.

Hang, hallás, kép, látás, képfelbontás, alkalmazások. Az emberi hallás és látás műszaki vonatkozásai, hangosságérzet, képérzékelés, elfedési jelenségek. A mintavételezésről és kvantálásról tanultak felelevenítése. Analóg és digitális hangjelek jellemzői, a jeltomörítés lehetőségei és építőelemek. Színes mozgókép megjelenítése analóg és digitális formában.

Rádiócsatorna, rádiós összeköttetések jellemzése, rádióspektrum felosztása. Antennák irányítottsága, nyeresége és hatásos felülete, antennák alkalmazásai. Rádióhullámok direkt és kétutat terjedése, a rádiócsatorna szakaszcsillapítása. (4 előadás)

Infokommunikációs hálózatok alapjai:

Klasszikus vezetékes és vezetéknélküli hálózatok:

Cellás rendszerek evolúciója. Első (1G) és második (2G/GSM) generációs mobil cellás rendszerek. GSM
hálózatok felépítése, a TDMA alapú rádiós interfész. Beszéd- és csatornakódolás, jelzésátvitel GSM rendszerekben. 2G szolgáltatások. CDMA alapú cellás rendszerek.

Mobil szolgáltatások, SMS és MMS átvitel működése, a barangolás (“roaming”) megvalósítása. (3 előadás)

Modern csomag alapú infokommunikációs rendszerek:

Jelzésrendszerek (SS7, H323, SIP) összehasonlítása az áramkörkapcsolt beszédátvitel és az Internet telefonía szempontjából. (3 előadás)

A jövő hálózatai a jelen átviteli technológiai és szolgáltatásai tükrében:

Beszéd és multimédia továbbítása az Interneten. VoIP rendszerek követelményei és építőelemei, a minőségbiztosítás lehetőségei. IPTV rendszerek architektúrája és technológiái, video on demand (VoD) szolgáltatás megvalósítása.

Gerinchálózati átviteli technológiák. A szinkron digitális hierarchia (Synchronous Digital Hierarchy, SDH), következő generációs SDH. SDH rendszerek architektúrája. Hullámhosszszíntásan alapuló optikai transzport hálózatok (OTN) és rendszerek elemei.

Következő generációs hálózatok (Next Generation Networks, NGN) és az Internet multimédia (al)rendszer (Internet Multimedia Subsystem, IMS). Az NGN architektúrálás leírása, főbb jelleggazdasági, az NGN menedzsment architektúra. Az IMS struktúrája, szolgáltatás létrehozás és migráció. A szolgáltatás orientált architektúra (Service Oriented Architecture) koncepciója. (4 előadás)

(A gyakorlatok anyaga az előadásokhoz kapcsolódóan számítási és implementációs példák, esettermúnyok ismertetése):

Elektronikai technológia

(VIETA302, 5. szemeszter, 3/0/2/v/5 kredit, ETT)

1. **A tantárgy célkitűzése**

Az Elektronikai technológia c. szakmai alaptárgy keretében folyó képzés elsődleges célja a hallgatóknak az elektronikai moduláramkörök és rendszerek kivitelezésével kapcsolatos alapvető elméleti és gyakorlati ismereteknek megszerzése, készségeinek fejlesztése. A tantárgy célja áttekintést adni a mikroelektronikai eszközök és alkatrészek, az áramköri, optoelektronikai, mechatronikai, és egyéb modulok, valamint az elektronikus készülékek struktúrájáról, felépítéséről, előállítását és szerelési technológiájáról, a szakterület fejlődési trendjeiről. A tantárgy azon elektronikai technológiai - mikroelektronikai, áramkör építési, szereléstechnológiai, készüléképítési - ismereteket foglalja össze, amelyek minden villamosmérnök számára szükségesek az integrált áramkörökkel, továbbá az elektronikai részegységek és rendszerek kivitelezésével kapcsolatos alapvető tájékozottsághoz és az erre a területre specializálódott ipari szakemberekkel és kutatókkal való együttműködéshez. A tantárgy feladata az elektronikai technológiai módszerek összehasználása és implementálása.

A tantárgy követelményei eredményesen teljesítő hallgatóktól elvárható, hogy képesek legyenek:

- az elektronikai termékek gyártási módszereink, eljárásainak, technológiájának kidolgozására;
- az elektronikai termékek sorozatgyártásának tervezésére, a gyártási folyamatok optimalizálására,
gyártósorok telepítésének koordinálására;
- a technológiai tervezési folyamatban minőségbiztosítási és környezetvédelmi szempontok figyelembe vételére;
- az elektronikai alkatrészek, részegységek, készülékek gyártóberendezései működtetésének, programozásának, karbantartásának irányítására;
- a vállalati gazdasági menedzsmenttel konstruktív szakmai együttműködésre a termelésirányítás és gyártmányfejlesztés területén egyaránt;
- az elektronikai alkatrészek, áramkörök, részegységek, készülékek keresztezőivel való interaktív kapcsolattartásra a tervezés fázisában.

2. A tantárgy tematikája

Az laboratóriumi gyakorlatok témái:
1. Nyomtatott huzalozású lemezek előállítása
2. Vékonyrétegek előállítása és mintázatkialakítási technológiái
3. Passzív hálózat készítése vastagréteg technológiával
4. Lézeres technológiák moduláramköri hordozók kialakításában
5. Moduláramkör készítése furatzerelési technológiával, forrasztott kötések vizsgálata
6. Moduláramkör készítése felületszerelési (SMT) technológiával

Szabályozástechnika
(VIIIA303, 5. szemeszter, 3/2/0/v/5 kredit, IIT)

1. A tantárgy célkitűzése
Technológiai, élettani, gazdasági és környezeti folyamatok irányítása a mérnöki tevékenységek fontos, széleskörű ismerete, absztrakció és alkalmazás képességeket egyaránt igénylő feladatok közé tartozik. A tantárgy az irányítástechnika alapjaival, szabályozási rendszerek működési elveivel, analízisével, szintézisével, valamint a számítógépes támogatás nyújtotta eszközök alkalmazástechnikájával ismerteti meg a hallgatókat, miközben alapvető mérnöki szemléletformáló szerepet tölt be. A tantárgy követelményeit sikeresen teljesítő hallgatók felkészületére mérten részei és digitális szabályozási körök vizsgálatára, tervezésére, speciális irányításméleti kurzusok (optimális irányítás, identifikáció) illetve irányítástechnikai ismereteire épülő szakosztályok (írányító és robot rendszerek, beágyazott rendszerek, járműírányító rendszerek) és tantárgyak felvételére, valamint a kapcsolódó Laboratórium I-II tantárgyak mérési feladatainak elvégzésére.

2. A tantárgy tematikája
13 tényleges oktatási hét: 39 előadási + 13 tantermi és 13 számítógép előtti gyakorlati óra.

1. Irányítástechnikai alapfogalmak (3 óra előadás):

2. Dinamikus rendszerek modellezése (3 óra előadás):

3. Folytonosidejű lineáris szabályozások analízise (6 óra előadás):

4. Folytonosidejű lineáris szabályozások tervezése (9 óra előadás):

5. Diszkrétidejű lineáris szabályozások analízise (3 óra előadás):

6. Diszkrétidejű lineáris szabályozások tervezése (3 óra előadás):
 Egyszerű DDC szabályozás elvi megvalósítása. Mintavételes szabályozás tervezése bilineáris transzformációval: a transzformáció hatása a pólusokra és zérushelyekre, a tervezés főbb lépési, szabályozóbeállítás tervezése előírt fázistöbbletre és vágási frekvenciára az analóg szabályozónál megszokott technikával. Kétszabadságfokú szabályozás tervezése: a referencia modell és a megfigyelő polinóm megválasztása, a tervezés visszavezetése diophantoszi egyenletre majd lineáris egyenletrendszerre, a kauzalitási feltételek betartása, a tervezési algoritmus és illusztrálása példán, a paraméterváltozások hatása. Holtidős rendszer szabályozása, Smith-prediktor megvalósítása.

7. Szabályozások tervezése állapotéban (6 óra előadás):

8. Diszkrétidejű rendszermodelek, paraméteridentifikáció (3 óra előadás):

9. Nemlineáris rendszerek stabilítása, kitekintés (3 óra előadás):
III.4 Differenciált szakmai ismeretek - Laboratórium 1-2

Laboratórium 1.
(VIMIA304, 5. szemeszter, 0/0/4/f/5 kredit, MIT)

1. A tantárgy célkitűzése

A képzés elsődleges célja a hallgatók szakma-specifikus gyakorlati ismereteinek és késéségeinek fejlesztése. Ennek érdekében a hallgatók előzetes felkészülést, és a végrehajtás során intenzív közreműködést igénylő feladatokat oldanak meg, amelynek keretében ismeretereket szereznek, ill. mélyítenek el a szakmájuk szempontjából fontos anyagokra, alkatrészekre, berendezésekre és mérõeszközökre vonatkozóan, elsajátítják a mérések megtervezésének, összeállításának és végrehajtásának alapvető módszereit, valamint az alaplabor eszközeinek használatát, gyakorolják a mérési eredmények kiértékelési módszereit, ill. eljárásait, és megismerik a mérések dokumentálásának valamint a mérési eredmények további felhasználásának legfontosabb szabályait. A megszerezett ismeretekkel és késéségekkel a hallgatók képesek kell legyenek egyszerűbb elektrotechnikai, elektronikai, ill. digitális technikai problémákhoz, kapcsolódó mérési feladatok önálló megtervezésére és kivitelezésére, a mérési eredmények helyességének/megfelelőségének megítéléésére. A kitűzött célok megvalósulása érdekében a hallgatók az alaplaborban komplex feladatokat oldanak meg. Ezeknek egyes elemei a mérésre történő felkészülés időszakában, másokat a laboratóriumi munka keretében, ill. ezt követően kell elvégezniük. A felkészülés időszakára esik (1) a mérési feladat elvégzéséhez szükséges elméleti alapok átismétlése, ill. elsajátítása, beleértve mind a mérendő objektumra, mind a mérési módszerre vonatkozó ismereteket, (2) a konkret mérés megtervezése a mérendő objektum ismeretében, (3) a mérésre vonatkozó terv ellenőrzése pl. szimulációval, (4) a szükséges mérősészkoz kiválasztása, (5) a mérés feladatvérvénynyomajának teljes, vagy részleges elkészítése. A laboratóriumi munka végeztével a munka eredményeit és tapasztalatait összegző dokumentum/jegyzőkönyv elkészítése zárja a feladatok sorát.

2. A tantárgy tematikája

1. sz. mérés: Műszerkezelés
Bevezetés: A laboratóriumi bemutatása, a követelmények ismertetése, baleseti és tűzvédelmi oktatás. A laboratóriumban használt általános célú műszerek megismerése és használatának gyakorlása. Alapvető cél, hogy a megszerezett ismeretek alapján a műszerek kezelése ne okozzon nehézséget a későbbi tematikus mérési feladatok megoldásánál.

2. sz. mérés: Alapmérések

3. sz. mérés: Digitális alapeszközök
A mérés alapvető célja a tantárgy későbbi digitális méréseihez szükséges ismeretek átadása, az azokban szereplő korszerű tervezési és vizsgálati eszközök, módszerek első bemutatása, a logikai analizátor kezelésének gyakorlata.

4. sz. mérés: Jelanalízis I.
A mérés során a hallgatók megismerkednek a jelen Fourier-transzformációval történő vizsgálatával, összehasonlítják az idő- és frekvenciaturamánybeli leírást, mérési módszert sajátítanak el a Bode-diagram meghatározására, példákat látnak a mérés technika gyakorlati alkalmazására, spektrumanalízis használatára időtartamának nehezen detektálható tulajdonságok feltérképezésére.
5. sz. mérés: Jelanalízis II.
A mérés során a hallgatók feladatokat oldanak meg a következő témakörökben: az idő- és fázismérés, a lineáris hálózatok frekvenciafüggő átvitele és ennek elemzése időtartományban, jelterjedés elosztott paraméterű rendszereken (Time Domain Reflectometry), és hibadiagnosztikai feladatok megoldását időfüggvények elemzésével.

6. sz. mérés: Kétpólusok vizsgálata
A mérés célja, hogy az áramkör építésben előforduló alkatrészek mérésével a hallgatók tájékozódjanak az RLC elemek nem ideális tulajdonságairól, összetett kétpólusok mérése során megismerjék azok erősen frekvenciafüggő viselkedését, és megállapítsák a leíró paramétereket, a mérések során tanulmányozzák az alkalmazott módszerek tulajdonságait és korlátjait.

7. sz. mérés: Négypólusok vizsgálata
A mérés célja a korábban megszerzett elméleti ismeretek gyakorlati vonatkozásainak bemutatása a modellalkotás, az impedanciamérés és a mágneses jellemzők mérésének témakörökben, elsősorban anyagvizsgálati, paraméter-identifikációs feladatokhoz, ill. in-circuit mérésekhez kapcsolódóan.

8. sz. mérés: Aktív elektronikus eszközök vizsgálata
A mérés célja a különböző diszkrét félvezető diódák (réteg, Schottky, Zener, LED), bipolaris és térvezérlésű tranzisztorok vizsgálata: karakterisztikák, kisjelű paraméterek és dinamikus tulajdonságok mérése. A mérendő eszközök fizikai tulajdonságainak megismerése mellett fontos célkitűzés a mérések elvégzésére szolgáló mérési eljárások, ill. mérési összeállítások és cégműszerek, bemutatása, ill. gyakorlása.

9. sz. mérés: Logikai áramkörök vizsgálata
A mérés célja a TTL és CMOS integrált áramkörök tulajdonságainak vizsgálata és ellenőrzése méréssel, továbbá a műszeres (oszilloszkópos) mérések (pl. trigger feltételek, X-Y mód...) gyakorlása és ismeretbővítés a digitális integrált áramkörök alkalmazása terén.

10. sz. mérés: Sorrendi hálózat vizsgálata
A mérés célkitűzése a sorrendi hálózatokkal kapcsolatos ismeretek és funkcionális elemekkel tervezés elmélyítése és gyakorlati vonatkozásainak bemutatása, ismerkedés a CAD-rendszerrrel való logikai tervezés alapjaival, készesség szerezése egyszerű logikai hálózatok tervezésében, szimulálásában, beméréseben.

11. sz. mérés: Programozható perifériák mérése
A mérés célja, hogy a gyakorlatban bemutassa egy egyszerű programozott vezérlőáramkör működését (utasítás vezérelt áramkör), programozását gépközi szinten, gyakoroltsága a programok írását, fordítását, betöltését, lépésenkénti és valós idejű végrehajtását, a megszakítás működésének mechanizmusát és használatát, bemutassa típusok párhuzamos és soros kommunikációs módszerek mérése. További cél, hogy bemutassa komplex digitális áramkörök alkalmazását vezérlési és kommunikációs célokról, a vezérlőegység működésének demonstrálásával, gyakoroltsága számítógépes tervező-fejlesztő környezet használatát, hardver-szoftver komponensek együttes alkalmazását.

Laboratórium 2.
(VIMIA305, 6. szemeszter, 0/0/3/f/4 kredit, MIT)

1. A tantárgy célkitűzése
A Laboratórium 2 c. tantárgy keretében folyó képzés elsődleges célja – a Laboratórium 1 c. tantárgy folytatásaként - a hallgatók szakma-specifikus gyakorlati ismereteinek elmélyítése és ilyenirányú készségeinek további fejlődése. Ennek érdekében a hallgatók előzetes felkészülést, és a végrehajtás
során intenzív közreműködést igénylő feladatokat oldanak meg, amelynek keretében további ismerettereket szereznek, ill. mélyítének el a szakmai szempontjából fontos anyagokra, alkatrészekre, berendezésekre, rendszerekre, ill. fejlesztő-, valamint mérőeszközökre vonatkozóan, bővíti ismereteiket a mérések megtervezése, összeállítása és végrehajtása, valamint a laboratóriumban rendelkezésre álló eszközök használata terén, gyakorolják a mérési eredmények kiértékelési módszereit, ill. eljárásait, és bővíti az összetettebb mérések dokumentálásával, valamint a mérési eredmények további felhasználásával karókatos ismereteiket. A megszerezett ismeretekkel és képességekkel a hallgatók képesek kell legyeneke előtanulmányaikkal megalapozott, szakma-specifikus problémákhoz kapcsolódó, összetettebb mérési feladatok önálló megtervezésére és kivitelezésére, a mérési eredmények helyességének/megfelelőségének megítéléseére, és mindezek dokumentálására. A tantárgy keretében folyó képzés alapján, hogy a mérnöki munkához elengedhetetlenül szükséges gyakorlati készségek továbbfejlesztését segíti, a hallgatók mérnöki szemléletének formálásában, szakmai felelősség tudatuk erősítésében, valamint problémamegoldó és kommunikációs képességük fejlesztésében.

A kitűzött célok megvalósulása érdekében a hallgatók a Laboratórium 1. tantárgy keretében komplex feladatokat oldanak meg. Ezeknek egyes elemei a mérésre történő felkészülés időszakában, másokat a laboratóriumi gyakorlat keretében, ill. ezt követően kell elvégezniük. A felkészülés időszakára esik (1) laboratóriumi gyakorlat elfogadásához szükséges elméleti alapok átismétlése, ill. elsajátítása, beleértve mind a mérése/tervezendő objektumra, mind a mérési/tervezési módszere vonatkozó ismerteket, (2) a konkrét mérés megtervezése a méréndő objektum ismeretében, (3) a mérésre vonatkozó terv ellenőrzése pl. szimulációval, (4) a szükséges mérőeszközök kiválasztása, (5) a mérés feladattervének/programjának teljes, vagy részleges elkészítése. A laboratóriumi munka végezhető a munka eredményeit és tapasztalatai összegző dokumentum/jegyzőkönyv elkészítése zárja a feladatok sorát.

2. A tantárgy tematikája

1. mérés Egyszerű áramkör megépítése és bemérése
Az első laboratóriumi gyakorlat célja, hogy a hallgatók tapasztalataikat szerezzenek elektronikus áramkörök építése és bemérése terén. A konkrét feladat egy-egy előzetesen megismert és mérhető egyszerű elektronikus áramkör megépítése, kipróbálása és bemérése. Ehhez a hallgatók rendelkezésre állnak a szükséges aktív és passzív alkatrészek, a kísérleti áramkört befogadó panel (breadboard), a megfelelő huzalanyagok, továbbá a huzalozáshoz használható kéziszerszámok. (Minden hallgató önálló feladatot kap.) A megépített áramkör működőképességének ellenőrzését követően a mérőhelyen rendelkezésre álló mérőeszközök segítségével a hallgatók bemérik a megépített áramkör kijelölt jellemzőit, és az eredményeket összehasonlítják az előzetesen számított értékekkel. Ezt követően elemzik a mért és a számított értékek közötti eltérést, és szükség szerint korrigálják a mérés programját.

2. mérés Nyomtatott áramkör tervezés
A második laboratóriumi gyakorlat célja, hogy a hallgatók tapasztalataikat szerezzene a nyomtatott áramkör tervezés főbb lépései. Ennek érdekében: (1) megterveznek egy egyszerűbb áramkört OrCAD Capture CIS felhasználásával, (komponensek, footprintek megismertésére, OrCAD Layout Library Manager használata, kapcsolási rajz elkészítése), (2) szimulációval ellenőrizzék az elkészített áramkör tulajdonságait PSpice AD segítségével (időbeli jelalakok vizsgálata, Bode-diagram, alkatrészek paramétereinek megváltoztatása által okozott hatások vizsgálata), (3) elkészítik az áramkör nyomtatott áramkörü rendszert Layout Plus alkalmazásával (kétoldalas NYÁK megtervezése, SMD és furatszerelt alkatrészek elhelyezése, források, másik oldalra pakolása, autorouter használata), (4) megismerik az extra nyomtatott áramkör komponensek (fölia padok, thermal relief, copper pour) használatát, a back-annotation alkalmazását és a Gerber file készítését.

3. mérés EMC alapjelenségek mérése
A harmadik laboratóriumi gyakorlat célja néhány olyan jelenség vizsgálata, amelyek elektromos eszközök és berendezések kölcsönhatása révén, ill. transziens viselkedésének eredményeként jönnek létre,
VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR

A BSC KÉPZÉS PROGRAMJA

V 1.6 2013. június 24.

és amelyek ismerete alapvető a villamosmérnöki gyakorlat számára. A gyakorlat keretében a hallgatók:
(1) közöltő számításkokkal modellezik és mérik a teszt környezetben megvalósított induktív, a kapacitív és a konduktív esetében ismerteket, (2) méréseknél ellenőrök az elektromos készülékben használt hálózati szürök működését, és (3) tanulmányozzák az izollóampré, a transzformátort, valamint a relé be- és kikapcsolási tranzienseit, továbbá (4) mérík és szimulálják az RF-sugárás jelenségét.

4. mérés Villamos teljesítmény mérése

A negyedik laboratórium gyakorlat alapvető célja, hogy a hallgatók gyakorlati tapasztalataikkal egészítsék ki azokat az ismereteiket, amelyeket az előtanulmányok során a villamos teljesítmény méréséről és eszközéről szereztek. A gyakorlat keretében a hallgatók (1) egy változkozó feszültséggel táplált RLC hálózat teljesítmény viszonyait elemzik méréssel és számítással (látszólagos, hatásos és meddő teljesítmény), (2) megmérítik egy izollóampli karakterisztikáját, (3) mérík egy személyi számítógép-konfigurációjának által felvett hatásos teljesítményt, és (4) hibaszámítással értékelik az elvégzett méréseket. A mérések során megismerik az AC és DC lakatfogó, valamint egy elektronikus teljesítménymérő használatát is.

5. mérés Tranzisztoros erősítőkapcsolások vizsgálata

Az ötödik laboratórium gyakorlat keretében a hallgatók a tranzisztoros alapkapcsolások jellemzőinek méréssel és számítással történő meghatározását gyakorolják. Ennek keretében elmélyítenek az egyes kapcsolások munkapont és üzemi paramétereinek kiszámítására és mérésére vonatkozó ismereteiket, és a frekvencia függvényében felszivárogy a vizsgált kapcsolás átviteli jellemzőit, valamint bemeneti és kimeneti impedanciájának értékeit. A frekvencia függvényében végzett mérések kapcsán azt is megismerik, hogy hogyan lehet a rendelkezésre álló műszerek felhasználásával automatikus mérőrendszer kialakítani.

6. mérés Műveleti erősítő kapcsolások vizsgálata

A hatodik laboratórium gyakorlat keretében a hallgatók a műveleti erősítővel megvalósított műveleti erősítő kapcsolások (nem-invertáló, invertáló, ill. szimmetrikus műveleti erősítő egy műveleti erősítővel) jellemzőinek méréssel és számítással történő meghatározását gyakorolják. Ennek keretében méríik (1) a műveleti erősítő nullpont hibájának kompenzálását, (2) az invertáló és nem-invertáló műveleti erősítő erősítésének frekvenciafüggő viselkedését, (3) a szimmetrikus kapcsolás közös jel elnyomásának beállítását, (4) a szimmetrikus kapcsolás szimmetrikus és közös-jel erősítésének frekvenciafüggő viselkedését, valamint (5) egy - két időállandóval jellemzett - műveleti erősítő visszacsatolásával létrehozott műveleti erősítő frekvencia-menetének kompenzálását, és az erősítő viselkedését mind az idő-, mind a frekvenciatartományban.

7. mérés A/D és D/A átalakítók vizsgálata

A hetedik laboratórium gyakorlat célja (1) az analóg-digitális és digitális-analóg átalakítás jellemzőinek mérése, (2) hibamodellek felállítása mérnöki megfontolások alapján, (3) az átalakítók nemlineáris viselkedésének vizsgálata, (4) a dinamikus jellemzők vizsgálata, (5) az átalakítók használatának bemutatása jelformáló rendszerekben, továbbá (6) az eszköz adataikat értelmezésének és használatának bemutatása. A gyakorlat keretében a hallgatók a méréseket az Analog Devices gyártmányú AduC-812 Quickstart fejlesztőrendszer és demonstrációs kártya felhasználásával végzik (8051 alapú mikrokontroller mag, és A/D, ill. D/A átalakítók egy chipen).

8. mérés Rendszer-identifikáció és szabályozás

A nyolcadik laboratórium gyakorlat keretében a hallgatók egyrészt gyakorlati tapasztalatokkal bővítik a modell-illesztéssel, ill. rendszer-identifikációval kapcsolatos ismereteiket, másrészt állapot-megfigyelő és állapot-visszacsatoláson alapuló szabályozást terveznek és valósítnak meg előírt dinamikus viselkedés biztosítása céljából. A szabályozandó fizikai rendszert a laboratóriumi gyakorlat keretében analóg áramköri modelljei reprezentálja, a modell illesztést, a szabályozó tervezését, ill. valós-idéjű megvalósítását – a mérést végző hallgatók közreműködésével - a mérőhelyen rendelkezésre álló számítógép és a labolátvétel megvalósítása (1) Az analóg rendszer-modell gerjesztése és jellegzetes paramétereinek (gyorsaság, csillapítás) behatárolása. (2) A mintavételi idő megválasztása. (3) Identifikációs célú gerjesztő-jel választás, számítógépes adatgyűjtés, modell-illesztés. (4) Átérés a diszkretidőúj, átviteli függvényen alapuló

9. mérés Analóg fáziszárt hurok vizsgálata
A kilencedik laboratóriumi gyakorlat keretében a hallgatók megismerkednek az analóg fáziszárt hurok (APLL) áramkör blokkjainak működésével, az egyes blokkok karakterisztikáival, az APLL Bode diagramon alapuló analízis és tervezési módszereivel, az APLL mérési eljárásaival, és az APLL néhány, tipikus alkalmazásával. A mérés során a hallgatók méréseken könnyebben ellenőrizik az APLL dinamikus viselkedését, a gyakorlatban is megismerkednek az analóg FM, PM és a digitális FSK modulációs eljárásokkal. A gyakorlat programja: (1) Az APLL áramkör blokkjainak mérése (PD és VCO karakterisztika felvétele), (2) Az APLL áramkör befogás- és követési tartományainak felvétele, (3) Az APLL-t jellemző átviteli függvények mérése (H(s) zártkörú átviteli függvény, [1-H(s)] hibafüggvény), (4) Analóg FM és PM demodulátorok megvalósítása APLL áramkörrel, illetve ezen demodulátorok karakterisztikáinak felvétele, (5) Digitális FSK demodulátor megvalósítása és mérése (Mérés kisöketű FSK esetén, mérés nagyöketű FSK esetén (a hurok szétejtése, befogási transzc. generálása)), (6) Két különböző csillapítási tényezővel jellemzett APLL dinamikájának mérése. 10. mérés 900 MHz-es FSK adatátviteli berendezés vizsgálata
A tizedik laboratóriumi gyakorlat keretében a hallgatók az FSK modulációs eljárás és a szuperrhetere din vevő terén megszerzett ismereteiket egészitik ki egy, a System-on-a-Chip (SoC) koncepció jegyében kialakított, a 900 MHz-es ISM sávban működő, szimpless FSK összeköttetést biztosító rádió berendezés mérésén keresztül. Ennek kapcsán megismerkednek a rendszer rendszertechnikai felépítésével, az egyes blokkok feladatával és működésével, a blokkok legfontosabb paramétereivel, az ezhhez tartozó rendszeralizálást és szintézis módszereket, valamint a SoC koncepció néhány alapelvét. A berendezés magját képező TRF6900A 900 MHz-es adó-vevő IC és a TRF6900 EVM fejlesztő rendszer dokumentációnjának tanulmányozása révén a hallgatók által megközelítésre kerülő komplex IC-k angol nyelvű adatlapjainak és tervezési segédleteinek használatában. A gyakorlat programja: (1) A TRF6900 IC adójának mérése: az adó blokkjainak programozása, az adó névleges frekvenciájának beállítása, a frekvenciaszintetizátor spektrumának ellenőrzése, a modulált FSK jel spektrumának mérése. (2) A TRF6900 IC vevőjénél a vevő blokkjainak programozása, a lokálfrekvencia kiválasztása, az FSK vevő paramétereinek mérése (A vevő átviteli függvényének mérése, a frekvencia-diszkrémínátor karakterisztikájának felvétele, FSK jel vélve esetén a döntő áramkör be- és kimenetének mérése a bemenő szint függvényében). 11. mérés Logikai vezérlők alkalmazástechnikája
A tizenegyedik laboratóriumi gyakorlat célja, hogy hallgatók gyakorlati tapasztalatokkal bővítsék a számítógépes technológiai-folyamat irányítás néhány tipikus eszközeire, és a hozzájuk tartozó tervezési és megvalósításra vonatkozó ismereteiket. A gyakorlat keretében felhasznált rendszer Siemens S7 PLC egységekből épül fel, komponensei a WinCC operációs rendszer, Simatic Manager szoftver, PROFIBUS hálózati csatoló, PROFIBUS kábelvezetés, S7-314C-DC kompakt PLC modulok (2 egység, mindegyikben CPU, analóg és digitális ki- és bemeneti), egy szoftver megfelelő, hogy valamennyi elemeket ismérjék és beállítsák. A rendszer szolgáltatásait a hallgatók egy egyszerű mintafolyamaton elvégzett mérések, ill. beavatkozások keretében ismerik meg. A gyakorlat programja: (1) A rendszer konfigurálása előkészített könyvtári elemekből építkezve a WinCC felületen keresztül, (2) konfigurálts rendszer megfelelőségének ellenőrzésére alapuló tesztek segítségével, (3) mintafolyamat előírt viselkedésénél biztosított, hogy a méréseknek a megfelelőségének a konfigurálts rendszer részére az eredmények összevetése a előzetes számításokkal.
III.5 A villamosmérnöki alapszak szakirányainak felsorolása

1. Beágyazott és irányító rendszerek szakirány: Kiszolgálója: AAiT, IIT, MIT.
 Tantárgyak: Beágyazott és ambiens rendszerek (MIT)
 Mikrokontroller alapú rendszerek (AAiT)
 Programozható irányítóberendezések és szenzorrendszerek (IIT)
 Ágazatok: Beágyazott információs rendszerek (MIT)
 Korábban: Beágyazott információs rendszerek főszakirány
 Irányítórendszerek (IIT)
 Korábban: Irányítástechnikai és robotinformatikai fősza
 Számítógép-alapú rendszerek (AAiT)
 Korábban: Számítógépek rendszer- és alkalmazástechnikája fősza
 Koordinátor: MIT

2. Infokommunikációs rendszerek szakirány: Kiszolgálója: HIT, HVT, TMIT.
 Tantárgyak: Hálózati technológiák és alkalmazások (TMIT)
 Médiakommunikáció (HIT)
 Nagyfrekvenciás rendszerek technikája (HVT)
 Ágazatok: Infokommunikációs hálózatok és alkalmazások (TMIT)
 Korábban: Infokommunikációs rendszerek főszakirány
 Médiakommunikációs technológiák és rendszerek (HIT)
 Korábban: Szélessávú és média-kommunikáció fősza
 Nagyfrekvenciás rendszerek és alkalmazások (HVT)
 Korábban: Szélessávú és média-kommunikáció fősza
 Koordinátor: HVT

3. Mikroelektronika és elektronikai technológia szakirány: Kiszolgálója: EET, ETT.
 Tantárgyak: Mikroelektronikai tervezés (EET)
 Elektronikai gyártás és minőségbiztosítás (ETT)
 Monolit technika (elágazó) (EET)
 Moduláramkörök és készülékek (elágazó) (ETT)
 Ágazatok: Mikroelektronika (EET)
 Korábban: Mikrorendszerek és moduláramkörök fősza
 Elektronikai technológia (ETT)
 Korábban: Mikrorendszerek és moduláramkörök fősza
 Koordinátor: EET

4. Villamos energetika szakirány: Kiszolgálója: VET.
 Tantárgyak: Villamos gépek és alkalmazások
 Villamosenergia-átvitel
 Villamos kapcsoló készülékek
 Ágazatok: Nincsenek.
 Koordinátor: VET
III.5.1 Beágyazott és irányító rendszerek szakirány (MIT, IIT, AAIT)

(Embedded Information and Control Systems)

A szakirány koordinátora: MIT

Ágazatok:
Beágyazott információs rendszerek (MIT)
Irányítórendszerek (IIT)
Számítógép-alapú rendszerek (AAIT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:

2. A megszerezhető kompetenciák:
A szakirány elvégzése után a hallgatók képessé válnak:
- beágyazott információs és irányító rendszerek fejlesztésére és üzemeltetésére,
- a digitális jelátalakítás és jelfeldolgozás eszközeinek alkalmazására, hatásainak kezelésére,
- beágyazott rendszerek kommunikációs rendszereinek tervezésére,
- a mikrokontrollerek integrált belső egységeit használó digitális kapcsolások tervezésére,
- mikrokontrollerek firmware rendszerek megtervezésére, kommunikációs, konfiguráló, megjelenitő és tesztfelületének kialakítására gyors alkalmazásféleltségi eszközei használatával,
- az irányításhoz szükséges érzékelő, távadó és végrehajtó/beavatkozó elemek kiválasztására és az irányító rendszerhez történő illesztésére,
- intelligens szenzor rendszerek és ipari buszok alkalmazására,
- programozható irányító rendszerek kiválasztása, programozására és üzemeltetésére, és
- elosztott komponensek egy rendszerbe történő integrálására.

3. A megszerezhető ismeretek főbb témakörei:
- jelátalakítók, jelfeldolgozás,
- beágyazott rendszerek kommunikációjára, mikrokontroller alapú rendszerek fejlesztése,
- hardver-közelű szoftver rendszerek fejlesztése,
- érzékelők, távadók, beavatkozók ismerete, alkalmazása,
- programozható irányító rendszerek tervezése, üzemeltetése.

4. A témakörök közötti kapcsolódó legfontosabb módszertanok és technológiák:
- rendszertervezési módszertanok és technológiák, tervező rendszerek,
- DSP-k, FPGA-k és mikroprocesszorok alkalmazástechnika,
- mikrokontrollerek konfigurációs és diagnosztikai fejlesztő rendszerei,
- strukturált hardver-közelű programozás, esemény- és idővezérlés megvalósítása,
- folyamatműszerezés
- PLC programozás, elosztott rendszerek
5. A szakirány laboratóriumi képzése:
A kapcsolódó szakirány laborok és önálló laboratóriumi foglalkozások keretében magába foglalja a gyakorlati ismeretek széles körének elsajátítását, és egy, a szakterülethez kapcsolódó önálló nagyfeladat kidolgozását és megvalósítását.

6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatokért felelős tanszékeken elvégzendő szakirány laboratórium, önálló laboratórium és szakdolgozat készítés keretében valósul meg.

III.5.1.1 A szakirány tantárgyai

III.5.1.1.1 Beágyazott és ambiens rendszerek BMEVIMIA347
(6. szemeszter, 3/1/0/v/4 kredit, MIT)

A tantárgy célkitűzése: A tantárgy egy konkret alkalmazás architektúrájának és működésének részletes elemzésén keresztül ismerteti a beágyazott rendszerek főbb tulajdonságait, technológiai és alkalmazási jellemzőit, és egyidejűleg példát mutat az emberi (pl. otthoni vagy munkahelyi) környezet részvévé váló, elsősorban az életvitel és az életminőség szolgálatában álló beágyazott alkalmazásra, egy ún. ambiens rendszerre.

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesíthető hallgatóktól elvárható, hogy ismerjék a beágyazott rendszerekkel szemben támasztott általános és speciális követelményeket, a hardver és szoftver rendszerek eszközeinek főbb jellemzőit, a szabványosítási törekvéseket, a valós-idejű információfeldolgozás alapvető problémáit, továbbá a legalapvetőbb konstrukciós kérdéseket. Elvárható az is, hogy képessé váljanak beágyazott és ambiens rendszerek konfigurálására és üzemeltetésére, továbbá ilyen rendszerek specifikálására és tervezésükben, valamint kifejlesztésükben történő aktív részvételre.

III.5.1.1.2 Mikrokontroller alapú rendszerek **BMEVIAUA348**
(6. szemeszter, 3/1/0/v/4 kredit, AAIT)

A tantárgy célkitűzése: A tantárgy célja, hogy a hallgatókat megismerjessze az iparban legelterjedtebben használt mikrokontroller architektúrákkal, azok kiválasztási szempontjaival. A megszerzett ismeretek segítségével a hallgatók képesek képesek lesznek átlagos bonyolultságú mikrokontroller alapú rendszerek megtervezésére és valós idejű irányító programrendszerek kialakítására. A napjainkban legelterjedtebben használt fejlesztő eszközök megismerése biztos hátteret biztosít a jövőbeli újabb rendszerek gyors adaptálására.

Rövid tematika: Digitális rendszerek központi egységei: mikroprocesszorok és mikrokontrollerek architektúrálás összehasonlítása, kiválasztási szempontjai. 8/16/32 bites architektúrák (80C51/XC166/ARM és DSP architektúrák). A megfelelő architektúra kiválasztásának jelentősége és hatása a rendszer legfontosabb jellemzőire (sebesség, bitkezelés, törtszámok kezelése, belső memória, regiszterbankok).

III.5.1.1.3 Programozható irányítóberendezések és szenzorrendszerek **BMEVIIA349**
(6. szemeszter, 3/1/0/v/4 kredit, IIT)

A tantárgy célkitűzése: A tantárgy célja a beágyazott irányító rendszerekben és az ipari irányítástechnikában alkalmazott programozható irányítóberendezések, valamint a hozzájuk kapcsolódó érzékelő és beavatkozó rendszerek főbb jellemzőinek bemutatása, továbbá a fejlesztésükhöz, alkalmazástechnikájukhoz és üzemeltetésükhöz szükséges legfontosabb ismeretek átadása.
VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR

Megszerezhető készségek, képességek: A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy átfogó, alkalmazói szintű ismeretekkel rendelkezzenek a programozható irányító berendezések, valamint az érzékelő és beavatkozó rendszerek működéséről, üzemeltetéséről, és képessé váljanak folyamaható párhuzamos rendszerek tervezésében és fejlesztésében való közreműködésre.

Rövid tematika:

Termelésirányító rendszerek feladata, felépítése és funkciói. Folyamaható párhuzamos rendszerek generációi és kapcsolatuk a termelésirányító rendszerekkel.

III.5.1.2 Beágyazott információs rendszerek ágazat (MIT)

III.5.1.2.1 Beágyazott és ambiens rendszerek laboratórium BMEVIMIA350
(6. szemeszter, 0/0/3/f/4 kredit, MIT)

A tantárgy célkitűzése: A hallgatók elméleti és gyakorlati ismereteinek magalapozása a digitális rendszertervezés területén, különösen tekintettel a beágyazott és ambiens rendszerek megvalósítási követelményeire. A tantárgy keretében a hallgatók megismerik az összetett hardver komponenseket és tartalmazó rendszerek főbb tervezési módszereit, a tervezést támogató fejlesztői környezetek alkalmazását, valamint a hatékony tervezői módszerek és eszközök használatát. A tematikus mérések során autóipari, jeleldolgozó és különöző mérés technikai példákon keresztül a hallgatók gyakorlati tapasztalatokat szereznek. Beágyazott és ambiens rendszerek témakörében.

III.5.1.2.2 Önálló laboratórium BMEVIMIA353
(6. szemeszter, 0/0/4/f/5 kredit, MIT)

A tantárgy célkitűzése: A tantárgy keretében a hallgatók egy összetettebb mérnöki feladatot oldanak meg, amelynek eredményeként egy termék (prototípus) működő részegysége jön létre. Ennek során a
mérnöki munka minden lényeges fázisával megismerkednek és az egyes részfeladatokat a lehető legnagyobb mértékben, önállóan végzik el. A tantárgy egyben előkészítő féléve a szakdolgozatnak is.

III.5.1.2.3 Szakdolgozat **BMEVIMIA407**
(7. szemeszter, 0/10/0/f/15 kredit, MIT)

A **tantárgy célkitűzése**: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

III.5.1.3 Irányítórendszerek ágazat (IIT)

III.5.1.3.1 Programozható irányítóberendezések és szenzorrendszerek laboratórium **BMEVIIIA352**
(6. szemeszter, 0/0/3/f/4 kredit, IIT)

A **tantárgy célkitűzése**: Az ipari irányítástéchnika területén leggyakrabban előforduló érzékelő típusok dinamikus és statikus tulajdonságainak vizsgálata. Folyamatos és diszkret szabályozási körök tulajdonságainak meghatározása és szabályozóinak méretezése, PLC-s vezérlések bemutatása laboratóriumi gyakorlat keretében. A hallgatók megismerkednek a robotirányításban alkalmazott alapvető algoritmusokkal, azok gyakorlati problémáival, a robotok betanításával és programozásával.

III.5.1.3.2 Önálló laboratórium **BMEVIIIA355**
(6. szemeszter, 0/0/4/f/5 kredit, IIT)

A **tantárgy célkitűzése**: A szakirányban tanult ismeretek elmélyítése és gyakorlati tapasztalatok szerzése egy szűkebb, a hallgató egyéni érdeklődési körének megfelelő tématerületen, valós mérnöki feladatok megoldása közben. Alapvető célkitűzés, hogy a hallgató a választott téma szűkebb szakterületéről az átlagos hallgatói ismereteket meghaladó felkészültséget szerezzen, és a tantárgy keretében végzett munkát – megfelelő előrehaladás esetén – szakdolgozat keretében is hasznosíthatja tudja.

III.5.1.3.3 Szakdolgozat **BMEVIIIA403**
(7. szemeszter, 0/10/0/f/15 kredit, IIT)

A **tantárgy célkitűzése**: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
III.5.1.4 Számítógép-alapú rendszerek ágazat (AAIT)

III.5.1.4.1 Mikrokontroller laboratórium BMEVIAUA351
(6. szemeszter, 0/0/3/4 kredit, AAIT)

A tantárgy célkitűzése: A tantárgy célja, hogy a hallgatókat megismertesse az iparban legelterjedtebben használt mikrokontroller típusok alkalmazástechnikájával. A mérések során a hallgatók megismerkednek a beágyazott rendszerek hardver tervezési és hardverközi programozási lépéseivel, kommunikációs és tesztelési módszereivel, a beágyazott operációs rendszerek alkalmazási problémáival. Egy kisebb (8051) és egy nagyobb (ARM) teljesítőképességű mikrokontroller fejlesztő kit és integrált fejlesztői környezet segítségével kísériük végig a beágyazott rendszerek mikrokontroller alapú fejlesztéseinek minden lépését, ezekben történik a kiadott házi feladatok megoldása is.

Rövid tematika:

1. Hardver kapcsolás tervezése CAD támogatással
Ezen a vezetett (bemutató jellegű) mérésen a hallgatók megismerkednek egy hardver tervezést támogató CAD rendszerrel (PADS2005), egyszerűbb példákon elsajátítják a kapcsolási rajz fejlesztés és az áramkör simuláció (TINA) lépéseit.

2. Hardver áramkör tervezése, építése
Ezen a vezetett (bemutató jellegű) mérésen a hallgatók folytatják az ismerkedést a hardver tervezést támogató CAD rendszerrel (PADS2005), egyszerűbb példákon elsajátítják a nyomtatott áramkör tervezés lépéseit. Megismerik az első fejlesztési mintapéldányok fizikai megépítésének eszközeit és felület szerelt alkatrészekből összeborítják, majd felélesztenek egy egyszerűbb áramkori kapcsolást.

3. Mikrokontrollerek programozása assembly szinten
A mérésen a hallgatók a mikrokontrollerek assembly szintű programozását sajátítják el egyszerűbb feladatok (digitális és analóg be- és kimenetek kezelése, megszakításkezelés, hardver időzítés, egyszerűbb algoritmusok) megoldásával. Bemutatásra kerül az a hardver-kit és integrált szoftver fejlesztő környezet (C8051F040DK), amelyet minden hallgató megkap abból a céllából, hogy ezen segítségével végezze el a mérésen kiadásra kerülő hardver-szoftver illesztési feladat (önállóan megoldandó házi feladat) megoldását.

4. Mikrokontrollerek programozása C nyelven
A beágyazott mikrokontrolleres rendszerek irányító programjait a kényelmesebb fejlesztés és a programok hordozhatósága érdekében C nyelven fejlesztik a leggyakrabban. A hallgatók a mérésen ennek a fejlesztői platformnak a tulajdonságait és specialitásait sajátítják el egyszerű valós idejű irányítási/vezérlési és megjelenítési feladatok megoldásán keresztül.

5. Mikrokontrollerek kommunikációjának vizsgálata
A mérésen a hallgatók egyszerű programozási feladatok megoldásával vizsgálatokat végeznek a mikrokontrolleres alkalmazások típusos belső (SPI, I2C) és külső (RS232, RS485, CAN) kommunikációs csatornáinak vizsgálatára.

6. Illesztési feladatok mikrokontrollerekre
Egy-egy beágyazott irányító rendszerben a mikrokontroller különböző érzékelőkön és végrehajtó/beavatkozó szerveken keresztül kapcsolódik környezetéhez. Ezen egységek illesztési kérdéseivel kezelésével ismerkednek meg a hallgatók az elvégzendő mérési feladatok során (elmozdulás/elfordulás érzékelése FPGA panel segítségével, motorvezérlés PWM kimenettel, egyszerűbb szabályozási algoritmus megvalósítása).
7. Valósidejű irányítási feladatok PLC-vel
A mérésen a hallgatók megismerkednek a tanszéken működő félüzemi folyamatmodelllel, az ipari érzékelő, végrehajtó és beavatkozó egységekkel, valamint az intelligens Simatic S7 irányítórendszer főbb tulajdonságaival. A rendszeren egyszerűbb identifikációs és valósidejű irányítási részfeladatokat oldanak meg.

8. Beágyazott operációs rendszerek használata
A mérést végző hallgatók megismerkednek μC/OS-II operációs rendszer alkalmazásával. Többtaszkos, valósidejű feladatok megoldásán keresztül sajátítják el az idő- és eseményvezérelt rendszerek legfontosabb tulajdonságait, szinkronizációs elveit.

9. ARM mikrokontrollerek alkalmazástechnikája
A mérésen a hallgatók megismerkednek a Linux operációs rendszernek egy nagyobb teljesítményű mikrokontrollert (ARM9) tartalmazó rendszerre való gyors telepítésének problémáival, majd a telepített rendszer alatt futó alkalmazások és a host rendszer között teremtenek kapcsolatot a gyors alkalmazásfejlesztés (RAD) módszereivel.

10. Önálló tervezési feladat
A hallgatók a 3. mérésen egy C8051F040DK mikrokontrolleres kitet és ehhez egy önálló tervezési feladatot kapnak, amely során egy adott illesztési/irányítási feladatot kell megoldaniuk. Ezen a mérésen az általuk elkészített hardver-sofтвер megoldást mutatják be a mérésvezetőnek, és átadják a munkához tartozó tervezési dokumentációt.

III.5.1.4.2 Önálló laboratórió BMEVIAUA354
(6. szemeszter, 0/0/4/0/5 kredit, AAIT)

A tantárgy célkitűzése: A tantárgy célja a szakirányban tanult ismeretek elmélyítése és gyakorlati tapasztalatok megszerzése egy szükebb, a hallgató egyéni érdeklődésének megfelelő tématerületen. Alapvető célkitűzés, hogy erről a szükebb szakterületről a hallgató az átlagos hallgatói ismeretteket meghaladó felkészültséget szerezzen, és a tantárgy keretében végzett munkáját – megfelelő előrehaladás esetén – szakdolgozat keretében is hasznosítható, illetve folytatni tudja.

III.5.1.4.3 Szakdolgozat BMEVIAUA405
(7. szemeszter, 0/10/0/0/15 kredit, AAIT)

A tantárgy célkitűzése: Az alap képzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
III.5.2 Infokommunikációs rendszerek szakirány (HIT, TMIT, HVT)
(Infocommunication Systems)
A szakirány koordinátora: HVT
Ágazatok:
Médiakommunikációs technológiák és rendszerek (HIT)
Infokommunikációs hálózatok és alkalmazások (TMIT)
Nagyfrekvenciás rendszerek és alkalmazások (HVT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
Az infokommunikáció a konvergáló távközlő és számítógép-hálózatok, az ezekben nyújtható szolgáltatások és a segítségükkel megvalósítható – beszéd, adat, kép, videó, multimédia és összetett információs társadalmi – alkalmazásokat foglalja magában. Ezen hálózatok, szolgáltatások és alkalmazások technológiái a hálózat alapú információs társadalom pilléreit képezik. Magyarországon az infokommunikációs rendszerek és alkalmazások jelentős kutatási és fejlesztési háttere van, számos olyan hazai és multinacionális szolgáltatóknak és gyártónak van K+F részlege hazánkban, akik a globális piacra terveznek termékeket. Ennek köszönhetően az „Infokommunikációs rendszerek” szakirányon végzett hallgatóknak számos elhelyezkedési lehetőség kínálkozik, nem csak ezen szolgáltatóknál és gyártóknál, de az elektronikus gazdaság és kormányzat infokommunikációs rendszereit működtető, valamint értéknövelt szolgáltatásokat előállító kis- és középvállalkozásoknál egyaránt.

2. A megszerezhető kompetenciák:
- Infokommunikációs hálózatok technológiái és a megvalósítható alkalmazások
- Nagysebességű vezetékes és vezeték nélküli hálózatok rendszertechnikája
- Médiatartalom terjesztésének technológiái

3. A megszerezhető ismeretek főbb témakörei:
- Vezetékes, fix és mobil vezeték nélküli hálózatok, valós idejű átvitel IP alapú hálózatokon, digitális kapcsolóközpontok, hálózati alkalmazások minőségbiztosítása;
- Nagyfrekvenciás rendszerek felépítése, rendszerelemek leírása, tervezés és realizálás alapjai
- Hang-, kép-, és mozgókép rendszerek, stúdiótechnika, műsorszórás

4. A témakörökhoz kapcsolódó legfontosabb módszertanok és technológiák:
- Fix és mobil vezeték nélküli hozzáférési hálózatok technológiái, hálózatok tervezése, minőségi és valós idejű átvitel biztosításának módszerei
- Forráskódolás, FM/AM/DVB/DAB/DRM műsorszórás, IP médiakommunikációs technológiák
- Nagyfrekvenciás rendszerek jellemző módszerei, nagyfrekvenciás rendszerelemek tervezési módszerei, megvalósítási technológiái

5. A szakirány laboratórium igénye: 150 fő

6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatokért felelős tanszékeken elvégzendő szakirány laboratórium, önálló laboratórium és szakdolgozat készítés keretében valósul meg.

III.5.2.1 A szakirány tantárgyai

III.5.2.1.1 Médiakommunikáció BMEVIHIA325
(6. szemeszter, 3/1/0/v/4 kredit, HIT)

A tantárgy célkitűzése: A tantárgy célkitűzése az, hogy a hallgatók a médiatartalom előállítását, kódolását, továbbítását és megjelenítését lehetővé tevő technológiákkal megismerkedjenek, annak
érdekében, hogy e rendszerekben az egyes megoldásokat szakszerűen pozicionálni tudják, és tisztában legyenek azok alkalmazási lehetőségeivel és korlátaival.

Megszerezhető készségek/képességek: A tantárgy keretében a hallgatók időtálló áttekintő ismereteket kapnak a mediatartalom előállítását, kódolását, továbbítását és megjelenítését lehetővé tevő technológiákról.

III.5.2.1.2 Hálózati technológiák és alkalmazások BMEVITMA341
(6. szemeszter, 3/1/0/v/4 kredit, TMIT)

A tantárgy célkitűzése: A tantárgy célkitűzése, hogy egyrészt elmélyítse az Infokommunikáció tantárgyban megszerzett hálózati technológiákkal kapcsolatos ismereteket, másrészt erre építi rendszereket a hallgatók készségét adjón a hálózati alkalmazásokról.

Megszerezhető készségek/képességek: A tantárgy készség szintüő ismereteket ad a digitális kapcsolóközpontok alapvető méretezési és tervezési kérdésében, a megfelelő vezetékes és vezeték nélküli, fix vagy mobil hozzáférései hálózati technológiák kiválasztásában egy adott tervezési feladat végrehajtása során. A tantárgy fejleszti a hallgatók készségét az ezen hálózati technológiákhoz igazodó alkalmazások kiválasztásában, tervezésében is, illetve a szolgáltatásoknak biztosítható minőségi feltételek felismerésében, kihasználásában.

III.5.2.1.3 Nagyfrekvenciás rendszerek technikája BMEVIHVA342
(6. szemeszter, 3/1/0/v/4 kredit, HVT)

Optikai hálózatok elemei – optikai szálak, optikai adók és vevők felépítése. Speciálisan nagysebességű opto-elektronikai realizációk jellemzői.

III.5.2.2 Médiakommunikációs technológiák és rendszerek ágazat (HIT)

III.5.2.2.1 Médiakommunikációs technológiák és rendszerek laboratórium [BMEVIHIA326]

Témakörök: Modulációs módok vizsgálata, videó- és hang-bitsebesség-csökktentés algoritmusai, fekete-fehér és színes tv jel vizsgálata, MPX sztereo jel kódolása és dekódolása, DVB-T rendszer szimulációja

(6. szemeszter, 0/0/3/f/4 kredit)

III.5.2.2.2 Önálló laboratórium [BMEVIHIA327]

A tantárgy célkitűzése: A tantárgy célja a szakirányban tanult ismeretek elmélyítése és gyakorlati tapasztalatok megszerzése egy szükebb, a hallgató egyéni érdeklődésének megfelelő tématerületen. Alapvető célkitűzés, hogy erről a szükebb szakterületről a hallgató az átlagos hallgatói ismereteket meghaladó felkészültséget szerezzen, és a tantárgy keretében végzett munkáját – megfelelő előrehaladás esetén – szakdolgozat keretében is hasznosíthatja.

(6. szemeszter, 0/0/4/f/5 kredit)

III.5.2.2.3 Szakdolgozat [BMEVIHIA408]

A tantárgy célkitűzése: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

(7. szemeszter, 0/10/0/f/15 kredit)

III.5.2.3 Infokommunikációs hálózatok és alkalmazások ágazat (TMIT)

III.5.2.3.1 Infokommunikációs hálózatok és alkalmazások laboratórium [BMEVITMA343]

Témakörök: Interfészek vizsgálata, jelzésátvitel központok között, IP telefónia, mérések lokális számitógép-hálózatokon, digitális vonalszakasz kiegyenlítése, adatátvitel vezetékes hozzáférési hálózatokon fix és mobil vezeték nélküli hozzáférési hálózatokon (a modemtől a DSL-ig, Bluetooth, WLAN, WiMax, GSM, GPRS/EDGE, UMTS)

(6. szemeszter, 0/0/3/f/4 kredit)

III.5.2.3.2 Önálló laboratórium [BMEVITMA345]

A tantárgy célja a szakirányban tanult ismeretek elmélyítése és gyakorlati tapasztalatok megszerzése egy szükebb, a hallgató egyéni érdeklődésének megfelelő tématerületen. Alapvető célkitűzés, hogy erről a szükebb szakterületről a hallgató az átlagos hallgatói ismereteket meghaladó felkészültséget szerezzen, és a tantárgy keretében végzett munkáját – megfelelő előrehaladás esetén – szakdolgozat keretében is hasznosíthatja.

(6. szemeszter, 0/0/4/f/5 kredit)
III.5.2.3.3 Szakdolgozat **BMEVITMA414**
(7. szemeszter, 0/10/0/15 kredit)

A tantárgy célkitűzése: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

III.5.2.4 Nagyfrekvenciás rendszerek és alkalmazások ágazat (HVT)

III.5.2.4.1 Nagyfrekvenciás rendszerek és alkalmazások laboratórium **BMEVIHVA344**
(6. szemeszter, 0/0/3/4 kredit)

III.5.2.4.2 Önálló laboratórium **BMEVIHVA346**
(6. szemeszter, 0/0/4/5 kredit)

A tantárgy célkitűzése: A tantárgy célja a szakirányban tanult ismeretek elmélyítése és gyakorlati tapasztalatok megszerzése egy szűkebb, a hallgató egyéni érdeklődésének megfelelő tématerületen. Alapvető célkitűzés, hogy erről a szűkebb szakterületéről a hallgató az átlagos hallgatói ismereteket meghaladó felkészültsséget szerezzen, és a tantárgy keretében végzett munkáját – megfelelő előrehaladás esetén – szakdolgozat keretében is hasznosítani, illetve folytatni tudja.

III.5.2.4.3 Szakdolgozat **BMEVIHVA409**
(7. szemeszter, 0/10/0/15 kredit)

A tantárgy célkitűzése: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
III.5.3 Mikroelektronika és elektronikai technológia szakirány (EET, ETT)

(Microelectronics and Electronic Technology)
A szakirány koordinátora: EET
Ágazatok:
Mikroelektronika (EET)
Elektronikai technológia (ETT)

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
A mikroelektronika és az elektronikai ipar egyre szélesebb térnyerése a hazai ipar elmúlt évtizedének egyik örvendetes jelensége. A mikroelektronikai tervező cégek megjelenése az egyik leghatékonyabban kvalifikált mérnöki munkában teremtett hazai munkahelytartóségeket, ugyanakkor a multinacionális elektronikai szerelőipar megjelenése magas színvonalú elektronikai technológiai kultúrát teremtett Magyarországon. A szakirányban BSc diplomát szerző mérnökök multinacionális elektronikai szerelőipari vállalatoknál, illetve mikroelektronikai tervező cégekneknél helyezkedhetnek el vagy kisvállalkozási formában áramköörtervező, gyártó és szolgáltató tevékenységet végezhetnek.

2. A megszerezhető kompetenciák:
A szakirány kompetenciákat biztosít a mikroelektronikai eszközök (integrált áramkörök, érzékelők, integrált mikrorendszerek), valamint az azok és a belőlük felépülő elektronikai egységek (nyomtatott huzalozási áramkörök, áramkőri modulok, részegységek, készülékek) tervezési módszerei, gyártástechnológiaja és minőségbiztosítása területén. A szakirányban belül a „mikroelektronika ágazat” hallgatói a mikroelektronikai eszközök, az „elektronikai technológia” ágazat hallgatói pedig az eszközökből felépülő részegységek, valamint gyártástechnológiai folyamataik tervezéséhez és megvalósításához (gyártófolyamatok, gyártási folyamatok modernizálása, automatizált gyártótervezések) szerezhetnek mélyebbre elméleti és gyakorlati ismereteket. A szakirányra kerülő hallgatók széleskörű nemzetközi és hazai kooperációban végzett munkákba kapcsolódhatnak be.

3. A megszerezhető ismeretek főbb témakörei:
Mikroelektronikai tervezés, elektronikai gyártás és minőségbiztosítás
 ○ A mikroelektronika ágazat speciális ismeretek: monolit technika, mikroelektronikai laboratóriumi gyakorlatok
 ○ Az elektronikai technológia ágazat speciális ismeretek: moduláramkörök és készülékek, technológiai folyamatok és minőségellenőrzésük laboratóriumi gyakorlatok

4. A témakörök közé kapcsolódó legfontosabb módszertanok és technológiák:
A szakirány sokrétű tématerületét követően az ágazatokon belül különböző súlyal szerepelnek előadások, tantermi gyakorlatok, laborgyakorlatok, házi feladatok, gyárlátogatások, így a hallgatók különböző utakon szerezhetik meg a szak által biztosított diplomát. A laborgyakorlatok területén a mikroelektronika ágazat hallgatói választhatnak, hogy integrált áramköórtervezés, vagy integrált áramkögyártás témájú laboratóriumi gyakorlatokat végezzenek, míg az elektronikai technológia ágazat hallgatói tematikus technológiai laborgyakorlatain fő cél a készségekfejlesztés, az eszközök és berendezések működésének gyakorlati megismerése.

5. A szakirány laboratórium igénye:
A mikroelektronika ágazat hallgatói a mikroelektronikai tervező laboratóriumban ismerkedhetnek meg az integrált áramkör tervezés lépéseiével és módszereivel ill. a technológiai laboratóriumokban sajátíthatják el az integrált áramkör tervezés miatt mikro-teleo-mechanikai rendszerek gyártás alaplépéseit. Az elektronikai technológia ágazat hallgatói jórészt automatizált gyártó- és ellenőrző berendezések használatával az elektronikai gyártási és szerelési eljáráskokat tanulmányozhatják, valamint a kapott félkész vagy végtermékek anyagtulajdonságait, geometriai, szerkezeti és funkcionális paramétereit ellenőrizhetik.
6. Az ágazati képzés sajátosságai:
Az ágazati képzés az egyes ágazatokért felelős tanszékeken elvégzendő szakirány laboratórium, önálló laboratórium és szakdolgozat készítés keretében valósul meg.

III.5.3.1 A szakirány tantárgyai

III.5.3.1.1 Mikroelektronikai tervezés BMEVIEEA328
(6. szemeszter, 3/1/0/v/4 kredit, EET)

A tantárgy célkitűzése, hogy megtanítsa a hallgatóknak a korszerű mikroelektronikai elemek áramköri részletének működését és képessé tegye őket ez által integrált áramkörök tervezésére. Megtanítja a korszerű tervező rendszerek jellegzetességeit és használatuk módját, ezáltal képessé teszi a hallgatókat integrált áramkörök számítógéppel segített tervezésére.

Megszerezhető készségek, képességek: A hallgatók képesek lesznek egy adott feladatot megoldó áramkör magas szintű leírásban való megtervezésére és ebből a számítógépes tervezőprogramok segítségével olyan fájlok előállítására, amelyek vagy egy IC tervező cégekhez küldhetők az IC legyártására, vagy közvetlenül egy programozható váz váz tervezése. Tárgyalja a számítógéppel segített áramkörtervezés különböző lépéseit.

Rövid tematika:
A tantárgy bemutatja az integrált áramkörök megvalósításának lehetőségeit, a közös előre tervezés és gyártás, a full custom tervezések és FPGA-ig. Részletesen megismeri a tervezés és a gyártás egyes lépései. Részletesen tárgyalja a számítógéppel segített áramkörtervezés különböző lépcsőit. Bemutatja a korszerű mikroelektronikai áramkörök legfontosabb építőelemeinek működését.

III.5.3.1.2 Elektronikai gyártás és minőségbiztosítás BMEVIETA331
(6. szemeszter, 3/1/0/v/4 kredit, ETT)

A tantárgy célkitűzése, hogy bemutassa és megismertesse az összetett funkciókat megvalósító áramkörös modulok gyártási eljárásait, a minőséget meghatározó ténylegeset, a minőség ellenőrzési módszereit, eszközök és berendezéseit, továbbá a gyártásban való gyakorlati alkalmazási tipikus példáit.

Megszerezhető készségek, képességek: Elektronikus alkatrészek, összekötési rendszerek és készülékek tervezése és gyártása, szerelő- és kötési eljárások optimalizálása és ellenőrzése, automatizált gyártási gyakorlás, felépítése és üzemeltetése, a gyártási folyamat irányítása, a gyártási vizsgáló berendezések, a minőség-ellenőrzési és minőség-menedzsment módszerek alkalmazása, megbízhatósági és élettartam vizsgálatok tervezése és kivitelezése.

Rövid tematika:
III.5.3.2 Mikroelektronika ágazat (EET)

III.5.3.2.1 Monolit technika BMEVIEEA329
(6. szemeszter, 3/1/0/v/4 kredit, EET)

A tantárgy célkitűzése hogy megismertesse a hallgatókkal a monolit integrált áramkörök gyártási technológiájának alapeléseit az alapanyag minősítésétől kezdve a szerelési műveletekig. A laboratóriumi gyakorlatok célja, hogy a hallgatók elsajátítsák a tiszta terekben végzett műveletek sajátosságait és képessé váljanak önállóan egyszerű IC és érzékelő struktúrák tiszta térben történő fizikai megvalósítására.

Rövid tematika: A tantárgy bemutatja a monolit technológia alapeléseit, a monolit technológiával realizálható eszközök és áramkörtípusok működését és tárgyalja előállításuk speciális kérdéseit. Bemutatja a méretcsökkenés hatásait és annak technológiáját vonatkozásait. Bevezetést ad a mikro-elektromechanika (MEMS) eszközök világába, megismertet az érzékelők és beavatkozók működését, alkalmazási és gyártási kérdéseivel. Foglalkozik az intelligens környezet hardware elemeinek egyedi gyártási kérdéseivel, különös tekintettel a környezetből való energia nyerés kérdéseire. A tantárgyhoz tantermi gyakorlat tartozik és laboratóriumi gyakorlatsor választható.

III.5.3.2.2 Mikroelektronikai laboratórium BMEVIEEA330
(6. szemeszter, 0/0/3/f/4 kredit, EET)

A tantárgy célkitűzése, hogy részben az integrált áramkörtervezés, részben az integrált áramkörök megvalósítása iránt érdeklődő hallgatók számára biztosítson gyakorlati megvalósítási lehetőséget. Ezért a laboratóriumban a hallgatók választhatnak, hogy az IC tervezési gyakorlatsort vagy az IC előállítási gyakorlatsort szeretnék elvégezni.

Megszerezhető készségek, képességek: A tantárgy elágazó jellegéből fakadóan a megszerezhető készségek ill. képességek is kétirányúak. Az IC tervezési gyakorlatsort választók képesek lesznek egy egyszerű integrált áramkör megtervezésére az ötlettől a kész áramkör prototípusának beméréséig, az IC technológiájú gyakorlatsort választók képesek lesznek egy egyszerű IC vagy érzékelő fizikai megvalósítására és minősítésére, tiszta terekben végzendő munkára.

Rövid tematika: A tervezési laboratóriumi foglalkozások végrehajtása során egy egyszerű funkciójú cella számítógéppel segített megtervezésének egyes lépésein vezetjük végig a hallgatókat. A megtervezett áramkörök ellenőrzése során kerülhet az áramkör FPGA-ba való beépítésére és tesztelésére is. Az IC technológiájú gyakorlatsort során egy egyszerű monolit integrált áramkör gyártási lépéseit követi végig a hallgató a félvezető alapanyag minősítésétől a diffúzió, oxidnöveléséig, a különböző fotolitográfiai műveleteken keresztül az elkészített lapka tokba szerelésén keresztül mérésekkel történő ellenőrzésig.

III.5.3.2.3 Önálló laboratórium BMEVIEEA339
(6. szemeszter, 0/0/4/f/5 kredit, EET/ETT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszékek hirdetik meg őket és ott is kerülhetek lebonyolításra.
A tantárgy célkitűzése: Az alapképzés követelményeinek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.

A tantárgy célkitűzése, hogy megtanítsa azt a tervezési folyamatot, amelynek során elektronikai szempontból funkcionálisan definiált, meghatározott körülmények között üzemeltethető részegységek és rendszerek alkothatók, és gyakorlati példákon keresztül semléltesse a tervezést befolyásoló gyárthatósági, tesztelhetőségi, ergonómiai, zavarvédelmi, termikus, védelmi, biztonságtéchnikai szempontok érvényesítését.

Megszerezhető képességek: A hallgatók képesek lesznek elektronikai és mikroelektronikai alkatrészektől, részegységektől összetett, a kor műszaki technológiai szívnalának megfelelő, elektronikai termékeket (moduláramköröket, készülékeket, rendszereket) tervezni, valamint folyamatmérnökként a termékfejlesztéssel való kommunikációra. Készítségzintű ismereteket szereznek a számítógépes tervezőrendszerek és szimulációs szoftverek kezelését és alkalmazását illetően.

A tantárgy célkitűzése: Laboratóriumi gyakorlatokon az elektronikai, mikroelektronikai gyártási és szerelési eljárások tanulmányozása, a gyártás és szerelés során lejátszódó fizikai-kémiai folyamatok tanulmányozása, a kapott félkész vagy végtérkép anyagtulajdonságainak elemzése, szerkezeti és funkcionális paramétereinek ellenőrzése, a minőségellenőrzés kiértékelési módszereinek gyakorlati megismerése.

Megszerezhető képességek: Hordozólemezek rétegfejlaci és rajzolatkialakítási technológiai és vizsgálati, elektronikai szerelési eljárások: stencilyomtatás, alkatrészbőlletetés, forrasztás anyagtulajdonságok vizsgálati módszereinek alkalmazása, szerkezeti tulajdonságok optikai, akusztikus, illetve röntgen mikroszkópos vizsgálata, áramkör hordozók és összekötöttes rendszerek számítógéppel segített tervezése, gyártás-előkészítése és ellenőrzése

Rövid tematika: Nyomtatott huzalozású mintázatok készítése, minősítő mérése felületi profilmérővel és digitális mikroszkóppal. Nyomtatott huzalozású lemezek rétegfejlaci technológiai és felületi bevonatai,

III.5.3.3.3 Önálló laboratórium BMEVIETA340
(6. szemeszter, 0/0/4/f/5 kredit, EET/ETT)

A választható témák a képzés célkitűzéseivel összhangban a tanszékeken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak. Az egyes ágazatok által gondozott tanszék hirdetik meg őket és ott is kerülnek lebonyolításra.

III.5.3.3.4 Szakdolgozat BMEVIETA419
(7. szemeszter, 0/10/0/f/15 kredit, ETT)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása az ágazatot gondozó tanszéken konzulens felügyeletével.
III.5.4 Villamos energetika szakirány (VET)

(Electrical Power Engineering)

A szakirány koordinátora: VET

Ágazatok: nincsenek

1. A megcélzott szakterület főbb jellegzetességei, trendjei:
A szakirány célja: A villamos energetika területén belül elméleti és gyakorlati szakmai ismeretek oktatása az üzemszerű villamosenergia-átvitel és -elosztás, a villamosenergia-hálózatok kialakítása, működtetése és rendellenes állapotai témákról; a villamos gépekkel és hajtásokkal, a villamosgépes-rendszerrel kapcsolatos átfogó szakmai és gyakorlati ismeretek, alkalmazott számítási módszerek oktatása; a villamosenergia-hálózatokban alkalmazott kis- és nagyfeszültségű kapcsolókészülékek szerkezetének és működésének, a kapcsolókészülékek és a hálózatok között fellépő kölcsönhatások megismertetése. Az elméleti és gyakorlati ismeretek szélesítése az érdeklődő körnek megfelelően választott szakterületeken

A szakirány a Tanszék alkalmazásorientált oktatási és kutatási tevékenységére támaszkodva lehetőséget teremt a kapcsolatos energetikai technológiák és vizsgálati módszerek modern ismeretanyagának elsajátítására, és alapot nyújt a további mérnöki tudás megszerzéséhez.

2. A megszerezhető kompetenciák:
Villamosenergia-hálózatok kialakítása, üzeme, modellezése, számítása. Hálózatok üzemzavaros állapotainak alapharmonikus hatásai.

Villamos gépek és hajtások gyakorlati számítási, tervezési módszerei, üzemeltetése, kiválasztása, integrálása, modellezése.

Kapcsolókészülékek és a hálózatok között fellépő kölcsönhatások elmélete és gyakorlata. Mechanikus kapcsolókészülékek és olvadó biztosítók szerkezeti felépítménye és működésének alapjai.

3. A megszerezhető ismeretek főbb témakörei:
Villamosenergia-átvitel (Electric Power Transmission)

A villamosenergia-rendszer struktúrája, hálózati transzformációk, az energiaátvitel és energiaelosztás folyama. Hálózati elemek az átviteli és elosztási feladatokhoz, a hálózati elemek számítási célokra vonatkozó paramétereinek értelmezése, meghatározása, az elemek leképezése.

Villasó gépek és alkalmazások (Electrical Machines and Applications)

Villamos kapcsolókészülékek (Electrical Switching Devices)

4. A témakörök közé kapcsolódó legfontosabb módszertanok és technológiák:

5. A szakirány laboratóriumi képzése:
A tanszéki témakörök közé kapcsolódó mérések fizikai modeleken, számítógépes szimulációk, számítógépes munkahelyeken. Az alapvető bővítése, elmélyítése gyakorlati mérésekkel, számítógépes szimulációkkal.

III.5.4.1 A szakirány tantárgyai.

III.5.4.1.1 Villamosenergia-átvitel BMEVIVA335
(6. szemeszter, 3/1/0/v/4 kredit, VET)

A tantárgy célkitűzése: A tantárgy képzési célja a villamosenergia-hálózatok kialakításához, üzeméhez szükséges rendszerszemlélet elsajátítása, a kapcsolódó fizikai jelenségek és folyamatok elméleti és számítógépes megértéséhez, gyakorlati alkalmazási készségek elsajátítása az átviteli és elosztó hálózatok üzemi és számítás terén.

A tantárgy rövid tematikája:
- A villamosenergia-rendszer struktúrája, hálózati transzformációk, az energiaátvitel és energiaeloszlás folyama.
- Hálózati elemek az átviteli és elosztási feladatokhoz, a hálózati elemek számítási célokra vonatkozó paraméterek és értelmezése, meghatározása, az elemek leképezése.
- Több feszültségszintű hálózatok számítási módszerei.
- A szimmetrikus összetevők módszereinek alkalmazása.
- Nagyfeszültségű, hurkolt hálózatok számítási módszerei, alkalmazások.
- Transzformátor és távvezetékek rövidzárlatok áram-feszültség viszonyai A zárlatok és kikapcsolások alapharmonikus hatásai, ezen számítási módszerei.
- Csillagpont-földelési megoldások elve, módszerei, a kapcsolatos alapharmonikus jelenségek hibaállapotokban.
III.5.4.1.2 Villamos gépek és alkalmazások BMEVIEA334

(6. szemeszter, 3/1/0/v/4 kredit, VET)

A tantárgy rövid tematikája:

- Transzformátorok felépítése, állandósult és tranzients üzem.
- Forgógépek tekercselései, erőhatás és nyomaték számítása.
- Aszinkron gépek helyettesítő vázlata és nyomatéka, indítási és fordulatszám változtatási módszerek.
- Szinkron gépek helyettesítő áramköré és nyomatéka, stabilítás, a kiálló pólus hatása.
- Egyenáramú gépek tekercselése, a segédpólus és a kompenzáló tekercselés szerepe, külső, párhuzamos és vegyes gerjesztésű generátorok és motorok.
- Korszerű számítási módszerek alkalmazása: a végeselem-módszer alapjai, korszerű térszámító szoftverek alkalmazása, 2D probléma megoldása.
- Villamos gépek alkalmazásai: a húztartás, a szórakoztató elektronika és a járművek villamos gépei, mágnesezen lebegtetett vonatok, szupravezetős generátorok és motorok, szervomotorok.
- Villamos hajtások kinetikája.
- Villamos hajtások tervezése (védeltségi módoszatok, üzemviszonyok, melegedés, kiválasztás különböző üzemekre.).
- Villamos hajtások alkalmazási területei (városi járművek, vasúti járművek).

III.5.4.1.3 Villamos kapcsolókészülékek BMEVIEA336

(6. szemeszter, 3/1/0/v/4 kredit, VET)

A tantárgy célkitűzése: A tantárgy célja a villamosenergia-hálózatban alkalmazott kis- és nagyfeszültségű kapcsolókészülékek működésekor a kapcsolókészülékek és a hálózatok között fellépő kölcsönhatások elméletének megértése, valamint a mechanikus kapcsolókészülékek és olvadó biztosítók szerkezeti felépítésének és működésének alapjainak elsajátítása.

Megszerezhető készségek, képességek: Rendszerezett ismeretek a kapcsolókészülékek működésekor a kapcsolókészülékek és a hálózatok között fellépő kölcsönhatások témakörében. Képesség a mechanikus kapcsolókészülékek és olvadó biztosítók szerkezeti felépítésének valamint működésének megértésében. Alapkészségek a témakörhöz kapcsolódó számítások és összehasonlitó vizsgálatok területén. Alapismeretek megszerzése a kapcsolókészülékek kiválasztásához.

A tantárgy rövid tematikája:

- Villamos kapcsolókészülékek a kis- és nagyfeszültségű hálózatokban. Kapcsolókészülékek és hálózatok számítási modelljei valamint módszerei.
- Termikus igénybevételek. Üzem és túlterhelési, valamint zárlati áram okozta melegedések modellzése, számítása.
o Mechanikai igénybevételek. Áramvezetőkre és az ivre ható elektrodinamikus erőhatások számítási módszerei és gyakorlati alkalmazásai.

o Váltakozó áramú ív megszakítása kisfeszültségen. Az ív áramkorlátozó hatása.

o Nagyfeszültségű SF₆-gázos és vákuummegszakítók, valamint kisfeszültségű megszakítók szerkezeti felépítése és működése.

o Közép- és kisfeszültségű olvadó biztosítók, valamint kisfeszültségű kapcsolók, kontaktorok szerkezeti felépítése és működése.

o Nagy- közép- és kisfeszültségű szakaszolók, szakaszoló jellegű készülékkombinációk szerkezeti felépítése és működése.

III.5.4.1.4 Villamos energetika laboratórium BMEVIVEA337

(6. szemeszter, 0/0/3/f/4 kredit, VET)

Az elvégzendő mérések mindhárom elméleti szakirány tantárgy anyagához kapcsolódnak.

Témakörök:
1) Számítási-tervezési gyakorlatok villamosenergia hálózatokhoz számítógép alkalmazással.
2) Laboratóriumi mérések
 - Villamos gépek és alkalmazások témakörben (csúszógyűrűs aszinkron motor, hálózatra kapcsolt szinkrongép, külső gerjesztésű egyenáramú gép, frekvenciaváltóról táplált aszinkron motor) és
 - Villamos kapcsolókészülékek témakörben (egyen és váltakozó áram kikapcsolása, egyenáramú és váltakozóáramú ív, olvadó biztosítók, kismegszakítók).

III.5.4.1.5 Önálló laboratórium BMEVIVEA338

(6. szemeszter, 0/0/4/f/5 kredit, VET)

A választható témák a képzés célkitűzéseivel összhangban a tanszéken folyó tudományos kutatómunkákhoz és tervező-fejlesztő tevékenységekhez kapcsolódnak.

III.5.4.1.6 Szakdolgozat BMEVIVEA421

(7. szemeszter, 0/10/0/f/15 kredit, VET)

A BSc követelményeknek megfelelő, az önálló mérnöki munkára való alkalmasságot bizonyító feladat kidolgozása tanszéki konzulens felügyeletével.
III.6 Szabadon választható tantárgyak

A szabadon választható tantárgycsoportban a hallgatók ismereteik bővítésére általuk szabadon választott tantárgyakat vesznek fel - minimum 10 kreditpont kimértben - a Kar, más karok, vagy más egyetemek tantárgyainak kínálatából. A felvett tantárgyak egy része több-kevesebb átfedést is tartalmazhat más tantárgyakkal. Figyelem: ha a mintatantervben szereplő kötelező, illetve a tantervi követelmények teljesítéséhez már figyelembe vet egyéb tantárgyak együttesen egy tantárgy tananyagának több mint 25%-át tartalmazzák, úgy a tantárgy felvehető, de a tantervhez kapcsolódó követelmények teljesítéséhez nem vehető figyelembe (BME TVSZ 18. § (2))

A kar által ajánlott szabadon választható tantárgyak kínálata évről évre változik. Lévén ezen tantárgyak célja az ismeretek bővítése, mind az alapképzés és a mesterképzés szabadon választható tantárgyainak listái, mind a különböző szakok hasonló listái átfedhetik egymást. A jelenleg érvényes lista a kar honlapján megtalálható.